
Automatically Resolving Dependency-Conflict Building Failures
via Behavior-Consistent Loosening of Library Version Constraints

Huiyan Wang∗
State Key Lab. for Novel Software Technology

Nanjing University
Nanjing, China
why@nju.edu.cn

Shuguan Liu
State Key Lab. for Novel Software Technology

Nanjing University
Nanjing, China

liu_shuguan@126.com

Lingyu Zhang
State Key Lab. for Novel Software Technology

Nanjing University
Nanjing, China

zly@smail.nju.edu.cn

Chang Xu∗
State Key Lab. for Novel Software Technology

Nanjing University
Nanjing, China

changxu@nju.edu.cn

ABSTRACT

Python projects grow quickly by code reuse and building automa-
tion based on third-party libraries. However, the version constraints
associated with these libraries are prone to mal-configuration, and
this forms a major obstacle to correct project building (known
as dependency-conflict (DC) building failure). Our empirical find-
ings suggest that such mal-configured version constraints were
mainly prepared manually, and could essentially be refined for
better quality to improve the chance of successful project build-
ing. We propose a LooCo approach to refining Python projects’
library version constraints by automatically loosening them to max-
imize their solutions, while keeping the libraries to observe their
original behaviors. Our experimental results with real-life Python
projects report that LooCo could efficiently refine library version
constraints (0.4s per version loosening) by effective loosening (5.5
new versions expanded on average) automatically, and transform
54.8% originally unsolvable cases into solvable ones (i.e., successful
building) and significantly increase solutions (21 more on average)
for originally solvable cases.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS

Dependency conflict, version constraint, loosening resolution
ACM Reference Format:

Huiyan Wang, Shuguan Liu, Lingyu Zhang, and Chang Xu. 2023. Auto-
matically Resolving Dependency-Conflict Building Failures via Behavior-
Consistent Loosening of Library Version Constraints. In Proceedings of

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616264

the 31st ACM Joint European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering (ESEC/FSE ’23), December

3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3611643.3616264

1 INTRODUCTION

Python projects depend extensively on third-party libraries for re-
source and code reuse, and have gained increasing popularities in
recent years. Until Aug 2023, there are over four million release
versions of libraries in PyPI [17], a well-known centralized Python
repository of third-party libraries. To build Python projects any-
where and anytime, developers write configuration scripts (e.g.,
setup.py or requirements.txt) with version constraints for de-
pendent third-party libraries, each of which specifies expected ver-
sions for a specific library (e.g., numpy>=1.8, meaning all versions
equal to, or over, 1.8). When such version constraints are properly
specified, a Python project can be restored or built with a compati-
ble execution environment via importing those third-party libraries
satisfying these constraints, which can be done in a recursive way
by any Python library installer, e.g., Pip [14].

However, Python projects and their dependent third-party li-
braries are developed independently, and this causes developers to
have towrite version constraintsmanuallywithout proper guidance.
Besides, the quick growth of third-party libraries requires develop-
ers to spend non-trivial efforts [29, 41, 42] on keeping these con-
straints up-to-date along with library evolution. When failed to do
so, the version constraints can conflict with each other and the con-
cerned projects would result in building failures (named dependency-
conflict building failure, or DC building failure for short [50, 53])
due to the lack of a compatible execution environment [36, 47].
Fig. 1 gives a real building failure example from BugInPy [47, 54].
The failure steams from the fact that a project installing library
Clifford==1.3.1 requires a llvmlite library version satisfying
constraint (<0.36, >=0.35.0) to be installed first (transitively re-
quired by numba>0.46), but this installation conflicts with the
project’s another constraint on library llvmlite==0.32.1.

Existing work has investigated into this problem and proposed
variousways to address the concernedDC issues for Python projects.
For example, Wang et al. [53] proposed building dependency graphs
for Python projects to detect DC issues. Ye et al. [56] and Cheng

198

https://doi.org/10.1145/3611643.3616264
https://doi.org/10.1145/3611643.3616264
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616264&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Wang et al.

Clifford==1.3.1
----numba>0.46 (from Clifford==1.3.1)
--------llvmlite<0.36,>=0.35.0 (from numba>0.46->Clifford==1.3.1)
llvmlite==0.32.1----**ERROR**: numba 0.52.0 has requirement
llvmlite<0.36,>=0.35.0, but you’ll have llvmlite==0.32.1 which is incompatible.

Figure 1: Building failure #pandas_106_0 in BugsInPy [47, 54]

et al. [27] optimized detecting DC issues by searching constraints
from building necessities besides explicit libraries (e.g., Python inter-
preter and system libraries). This line of work focuses on detecting
and reporting Python DC issues. Another relevant line of work
emphasizes alleviating DC building failures by improving library-
installing strategies. For example, Pip (after 20.3) presented a back-
tracking strategy [12] to better restore a building process when
failed; smartPip [50] further optimized this process by controlling
the backtracking cost with the aid of a dedicated constructed PyPI
dependency database. However, all these efforts assume sticking to
original library version constraints, and can unfortunately gain still
limited benefits in resolving originally failed project building (e.g.,
completely helpless to 30% originally-unsolvable failures [50]).

We hence dig into Python’s project building process to see how
one can substantially resolve such DC building failures. Our in-
depth study discloses that some failures are indeed inevitable since
their associated library version constraints are themselves unsolv-
able (i.e., no solution satifying all constraints). We refer to such
failures as type-A failure (or A-failure for short), which have to
be resolved by rewriting constraints. We also observe that some
failures’ associated library version constraints are solvable in some
cases, but the used library installers must support backtracking
(otherwise, the installation could be stuck in a local unsolvable situ-
ation). We refer to such failures as B-failure. Finally, the remaining
failures’ associated version constraints are essentially solvable in
all cases, but some installers may still fail due to their specialized
search mechanisms. We refer to such failures as C-failure.

Since DC building failures are so heavily associated with library
version constraints, we naturally ask: instead of living with very

limited or even no solutions by sticking to original low-quality version

constraints associated with project libraries (mainly existing work’s

focus, e.g., [42, 50]), can one step further by proactively refining these

constraints for better quality to substantially resolve DC building fail-

ures with a better chance, and if yes, can this be done automatically?

To answer the question, we first empirically study existing Python
DC issues to investigate how DC building failures have occurred
due to improper library version constraints. We observe that strict
version constraints (e.g., pinned ones like llvmlite==0.32.1) dom-
inate the most unsolvable cases and limited solutions, and can be
refined to greatly alleviate failures by slightly loosening such con-
straints (e.g., loosening to one/fivemore version(s) already resolving
15.5%/27.5% unsolvable cases). However, loosening library version
constraints can be risky, since allowing importing versions other
than originally specified ones might introduce unexpected behav-
iors. As such, an immediate challenge is how to loosen version
constraints while still assuring libraries’ consistent behaviors with
respect to each specific project that uses these libraries.

With this regard, we propose our behavior-consistent loosening
approach, LooCo, which automatically decides maximal boundaries

rdfframework 0.0.38

elasticsearch >5.4.0,<6
elasticsearch-dsl *

elasticsearch-dsl 6.0.1 installed

elasticsearch >= 6.0.0, < 7.0.0

elasticsearch-dsl 6.0.1 installed

elasticsearch >= 5.5.1, < 7.0.5

loosened?

Unsolvable!

Solvable!

Figure 2: Loosening illustration for DC issue #99

ssmash 2.0.1

fly-circus >=0.6.4,<0.8
pyyaml >=5.1, <6

fly-circus 0.7.2 installed

pyyaml >=5.1.1, <5.2.0

fly-circus 0.7.2 installed

pyyaml >=5.1, <=5.3.1

loosened?

Solvable!

More
solutions

Figure 3: Loosening illustration for DC issue #131

in loosening version constraints based on its sliced call graphs that
capture truly invoked methods in these used libraries. Based on
another observation from our empirical study, only very limited
library methods (less than 10% on average) are actually invoked in
a Python project dependency. Then our loosening approach can be
very attractive by providing a great chance to effectively resolve DC
building failures via simply loosening library version constraints.

With LooCo, one can: (1) solve originally unsolvable cases relat-
ing to A-failures and B-failures, effectively resolving DC building
failures, (2) produce more solutions for originally solvable cases
relating to B-failures and C-failures, potentially helping future
failure resolution when projects and libraries evolve. One exam-
ple from Fig. 2 illustrates DC issue #99 [8] reported by Watch-
man [53], whose induced building can be resolved by LooCo: build-
ing rdfframework 0.0.38 requires intalling an elasticsearch
version satisfying “>5.4.0, <6”, and this request conflicts with
rdfframework’s indirect version constraint “>=6.0.0, <7.0.0” on
elasticsearch (transitively instroduced by elasticsearch-dsl);
then LooCo suggests loosening the library elasticsearch-dsl’s
version constraint on library elasticsearch to “>=5.5.1, <7.0.5”
(behavior-consistency validated), and the building failure is resolved
successfully. Another example [5] from Fig. 3 suggests that ssmash
2.0.1 can be built without any problem, and LooCo can further
loosen its version constraints (e.g., library pyyaml can expand its
original constraint “>=5.1.1, <5.2.0” to “>=5.1, <=5.3.1”) with
more solutions to avoid potential DC building failures in future.

We experimentally evaluate LooCo’s performance and useful-
ness with real-life Python projects and their DC issues. The evalua-
tion results report that: (1) LooCo could effectively loosen projects’
library version constraints, by 5.5 new versions expanded for each
library on average, with library behaviors successfully validated by
built-in test cases and developer feedbacks; (2) LooCo could solve
54.8% (46/84) originally unsolvable cases in A- and B-failures, and
enhance 50.2% (101/201) from “with solutions” to “with more solu-
tions” (21 new solutions on average) in B- and C-failures; (3) LooCo
was highly efficient and its time overhead was 0.4s on average per
library version loosening.

The remainder of this paper is organized as follows. Section 2
introduces the dependency conflict background. Section 3 presents
our empirical study and findings for motivating a constraint loosen-
ing approach. Section 4 elaborates on our LooCo’s methodology for
automatically resolving DC building failures. Section 5 evaluates

199

Automatically Resolving Dependency-Conflict Building Failures via Behavior-Consistent Loosening ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

kingarthur >=0.1.1, <=0.1.12

redis >=2.10.0

kingarthur >=0.1.1
redis >=2.10.0, <=2.10.6

grimoire-elk 0.63.0

kingarthur >=0.1.17, <=0.2.5

redis == 3.0.0

kingarthur >=0.1.14, <=0.1.15

redis >=2.10.0, <=2.10.6

1

2

3

unsolvable for redis

Kingarthur versions >= 0.1.1 can be
classified into three cuts concerning
their different redis dependencies

Figure 4: DC issue #272 with its three dependency cuts

LooCo’s performance and usefulness. Sections 6 and 7 discuss our
work and related work, and finally Section 8 concludes the paper.

2 PRELIMINARIES

2.1 Dependency in Python Projects

A Python project usually depends on multiple third-party libraries
via its configuration script (e.g., setup.py or requirements.txt).
In the script, a list of version constraints would be written by de-
velopers, each of which declares expected versions for a specific
library. This facilitates to better saving and restoring a correct ex-
ecution environment for the project, therefore running anytime
and anywhere. A version constraint usually follows PEP specifica-
tions [11] and can be divided into three classifications [47]: pinned,
constrained, and unconstrained. A pinned version constraint refers
to declaring a specific library version, e.g., “request ==2.20.0”. A
constrained version constraint refers to declaring library versions
under constrained ranges (>, >=, <, <=, !=, ==1.*), e.g., “pyyaml
>=5.1,<6.0”, and an unconstrained version constraint refers to only
declaring a library by the name only without any specific version
request, e.g., elasticsearch-dsl.

Note that code reuse is so pervasive in the Python world, and
not only Python projects depend on third-party libraries (directly
dependent library) to reuse library code, libraries also depend on
other libraries (a.k.a., indirectly dependent library for the project) as
well via version constraint declaration. We consider those declara-
tions in the project’s configuration script for its directly dependent
libraries as its direct version constraints, and version constraints
declared for its indirectly dependent libraries transitive imported as
indirect ones. Based on version constraints declared for the project’s
directly or indirectly dependent libraries, Python library installers
like Pip [14] and Conda [2] can accordingly install suitable versions
for a project’s all concerned libraries transitively, thus saving and
restoring a suitable execution environment for Python projects.
Due to popularity, we consider Pip as the typical library installer
in this work and other installers like Poetry, pipenv, virtualenv
also share similar environment management mechanisms.

2.2 Building Failures and Dependency Conflicts

However, restoring a suitable execution environment is observed
to be so difficult that developers usually spend hours or still fail to
set up a correct execution environment [36]. That is because for the
non-trivial NPC problem of dependency solving [23, 46], a typical
installer like Pip does not guarantee to always achieve a solution
for each library due to its specialized strategy, thus possibly leading
to building failures in restoring execution environment.

Many building failures [50, 53] have been observed and affect
restoring correct execution environments for Python projects due
to the conflicted version constraints for installing certain libraries.
This is known as dependency conflict issues (DC issues) [50, 53],
which occur due to the conflict among a Python project’s concerned
version constraints (either direct or indirect) during installation.
For example, as aforementioned earlier, Fig. 1 gives a real-world
building failure [47, 54] caused by DC issues. This building fail-
ure occurred because to install library “Clifford==1.3.1” for this
project, llvmlite satisfying “<0.36, >=0.35.0” would be transi-
tively installed, which would result in conflicting when installing
the project’s another direct dependency on llvmlite latter, i.e.,
“==0.32.1”. This exhibits a clear DC issue between the project’s
direct version constraint “llvmlite==0.32.1” and indirect one
“llvmlite<0.36, >=0.35.0”, transitively introduced by Clifford.

Regarding resolving DC building failures, there are two typi-
cal lines of work. One line of work [27, 56] focuses on detecting
DC issues more effectively by collecting complete dependencies
for projects, such as obtaining exhaustive dependency of projects
besides third-party libraries, e.g., local environment, the Python
interpreter and system libraries. Another line focuses on solving
existing version constraints better with improved installing strat-
egy, e.g., Pip backtracking [12] and smartPip [50]. Different from
existing researches generally on “sticking to projects’ original ver-
sion constraints to build execution environments”, we focus on
how to “refine version constraints automatically to resolve building
failures”, thus greatly complementing existing researches.

3 EMPIRICAL STUDY AND MOTIVATION

3.1 Research Questions

We raise the following research questions:
RQ1 (Study on DC issues): How did DC issues occur and

lead to building failures? What version constraints are desirable in
resolving such failures?

RQ2 (Study on developer practices): How did developers
write library version constraints in Python projects? What common
practices can be leveraged for resolving DC building failures?

3.2 Design and Setup

We collected two subjects for our empirical study on DC issues and
common developer practices, respectively.
3.2.1 Subject-A on DC Issues. We tracked all DC issues reported
byWatchman [53], which have also been studied in smartPip [50].
By removing un-reproducible cases until Jan 2023 if either the
code repository of the related Python project was removed or the
bug report did not contain necessary reproducing information for
analyses, we finally obtained 83 DC issues from 82 Python projects.

For example, issue #272 [6] is reported because when building
grimoire-elk 0.63.0 requires to install library kingarthur sat-
isfying “kingarthur>=0.1.1”, and this request might transitively
introduce constraint on “redis==3.0.0”, supposing the situation
when kingarthur 0.1.18 is truly installed. In this situation, it
conflicts with grimoire-elk’s other direct version constraint, i.e.,
“redis>=2.10.0, <=2.10.6”, as shown in Fig. 4. This makes an in-
staller impossible to find a suitable version to install for redis (i.e.,
root library that fails to be installed) in this situation. The issue

200

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Wang et al.

(a) package version

0

25

50

75

100

125

150

(b) average gap

0

200

400

600

800

(c) project depend number

19%

21%

16%

11%

8%

5%

7%

3%

6%
4%

[0,5)

[5,10)

[10,15)

[15,20)

[20,25)

[25,30)

[30,40)

[40,50)

[50,100)

[100,)

(a) Version
(a) package version

0

25

50

75

100

125

150

(b) average gap

0

200

400

600

800

(c) project depend number

19%

21%

16%

11%

8%

5%

7%

3%

6%
4%

[0,5)

[5,10)

[10,15)

[15,20)

[20,25)

[25,30)

[30,40)

[40,50)

[50,100)

[100,)

(b) Gap
(a) package version

0

25

50

75

100

125

150

(b) average gap

0

200

400

600

800

(c) project depend number

19%

21%

16%

11%

8%

5%

7%

3%

6%
4%

[0,5)

[5,10)

[10,15)

[15,20)

[20,25)

[25,30)

[30,40)

[40,50)

[50,100)

[100,)

(c) Version constraints

0% 20% 40% 60% 80% 100%

Project

Library 57.8% 27.2% 6.1% 6.5% 2.4%

15.5% 46.5% 16.6% 19.7% 1.7%

0-1K 1K-5K 5K-10K 10K-50K >50K

(d) LOC statistics

Figure 5: Description about Subject-B

describes a concrete building situation when dependency conflicts
happen and can help us specify the root library that fails to be
installed due to conflicting version constraints. To simulate all pos-
sible building situations related to this issue, we slice the related
dependent and independent version constraints and simulate ex-
haustive building possibilities by different dependency cuts. Each
dependency cut slices a conjunction situation of version constraints
for the root library during building with some necessary library
ranges specified. As in Fig. 4, all kingarthur versions in declara-
tion >=0.1.1 can be divided into three cuts concerning their dif-
ferent dependencies on the root library redis. When kingarthur
is installed with a version satisfying “>=0.1.1, <=0.1.12” (cut #1),
“redis>=2.10.0” would be introduced. When kingarthur is in-
stalled satisfying “>=0.1.14, <=0.1.15” (cut #2), “redis>=2.10.0,
<=2.10.6” would be introduced. When kingarthur is installed sat-
isfying “>=0.1.17, <=0.2.25” (cut #3), “redis ==3.0.0” would be
introduced. Cut #3 leads to an unsolvable conjunction for installing
redis, which is known as a dependency conflict resulting in a
typical DC building failure. The three cuts compose all situations
that an installer might meet for dependency solving upon the root
library redis’s version constraints related to this DC issue. We
believe such cut analyses can help us study all building situations
extensively and potential threats for those DC issues.

Therefore, we analyzed and obtained a total of 285 dependency
cuts for all the studied 83 DC issues. We consider these 285 cuts to
represent all possible situations for the studied DC issues that can
meet during building and work as our subject (a.k.a., Subject-A) for
answering RQ1 on symptoms and causes of DC building failures.

3.2.2 Subject-B on Open Projects. We also collected open projects
and libraries to investigate developers’ common practices in the
real world to facilitate our resolution. First, we scanned Python
repositories from GitHub with the top 500 stars with the following
requirements: (1) use Python as its main language (allowing typi-
cal script language like Shell, PowerShell, Bash, etc.), and can be
suitably deprecated by Python 3.8, (2) evolve with more than one
version during its versioning history, and (3) be imported as a library
by at least one down-stream project (a.k.a., dependent project). We
thus obtained 104 libraries in total. Then, we accordingly collected

requests ==2.21.0

urllib3 >=1.21.1, <1.25

Requests 2.21.0 corresponds to one cut

unsolvable for urllib3

api-indotel

requests ==2.21.0
urllib3 == 1.25.2

1

Figure 6: DC issue #56 with its only dependency cut

dependent projects for these libraries. Considering the limitations
of storage space, for libraries with over 300 dependent projects, we
collected the top 300 dependent projects sorted by stars. Finally, we
obtained 4,511 dependent projects (avg LOC: 12K, max LOC: 5M)
for 104 libraries (avg LOC: 8K, max LOC: 104K). Regarding the 104
libraries, we tracked all available versions across its development
from both GitHub and PyPI repo and obtained a total of 4,829 dif-
ferent library versions (avg: 46 versions, max: 166 versions). Fig. 5
illustrates the statistical information for the number of library ver-
sions, versioning gaps, the number of dependent libraries by each
project, and LOC statistics in Subject-B. Then, we investigate how
developers usually write and maintain version constraints for their
imported third-party libraries and investigate common practices to
guide our approach. More details about subjects can be found on
our website [9].

3.3 RQ1: Issue Symptom and Cause

Considering all 285 dependency cuts in Subject-A (introduced in
Section 3.2.1), we note that each cut specifies a conjunction of
several version constraints for the DC issue’s root library. If the
conjunction is unsolvable, this dependency cut can never result in a
solution of the root library satisfying all related version constraints,
thus leading to a building failure.

For example, cut #3 in Fig. 4 composes a conjunctionwith two ver-
sion constraints on redis, i.e., “==3.0.0” and “>=2.10.0, <=2.10.6”.
They conflict with each other and make it unsolvable for a redis
solution. In this case, some installers may directly cause a building
failure (e.g., Pip legacy strategy before Pip 20.3 [15]), while some
would proceed with fallbacks and further search the space simu-
lated by remaining cuts for possible solutions (e.g., Pip backtracking
strategy after Pip 20.3 [12]). However, if unfortunately, all depen-
dency cuts are unsolvable, even a perfect installer cannot find a
solution for installation. For example, Fig. 6 gives DC issue #56 [7]
for api-indotel corresponding to one cut only. It is unsolvable for
finding a solution of urllib3 because in its only dependency cut,
library request’s introduced dependency, i.e., “urllib3>=1.21.1,
<1.25”, is conflicting to the project’s another direct dependency,
i.e., “urllib3==1.25.2”. Such dependency conjunction cannot be
solved by any of the existing installers because for this project,
library urllib3 is always unsolvable for all situations during build-
ing (as illustrated by the only cut). We refer to such building failures
separately and obtain the following symptoms.

Symptom 1: 9.6% (8/83) DC issues are unsolvable unless their associ-

ated version constraints are rewritten, since all their corresponding

dependency cuts (8/285) are unsolvable (a.k.a., A-failure).

Symptom 2: 31.3% (26/83) DC issues contain at least one unsolvable

cut (76/285), and resolving their building failures has to install

fallback or backtracking (a.k.a., B-failure).

201

Automatically Resolving Dependency-Conflict Building Failures via Behavior-Consistent Loosening ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

We observe that 9.6% DC issues are unsolvable because all their
dependency cuts are unsolvable, and thus even a perfect installer
cannot resolve such unavoidable building failures (A-failure). Be-
sides, 31.3% DC issues contain at least one unsolvable cut, and
thus some existing installers without backtracking may result in
building failures locally (B-failure). We chose three representative
installers (Pip legacy [15], Pip backtracking [12], and the state-of-
the-art smartPip [50]). We experimentally confirmed that none of
them can build smoothly for the eight DC issues causing A-failures,
because resolving such unsolvable DC issues requires rewriting
declarations of version constraints among the Python project and
related libraries, as echoed in existing work [50]. Meanwhile, for
DC issues causing B-failures, Pip legacy suffers from 88.5% (23/26)
building failures while Pip backtracking and the state-of-the-art
smartPip can theoretically solve them all by allowing backtracking
strategies or spending more search resources to maintain an up-
to-date dependency database. However, in practice, backtracking
costs and database maintainence are non-negligible. For example,
Pip backtracking usually needs to retry 20 times on average to
obtain its eventual solution and may still result in building failure
for complex scenarios when resources are limited [50].

Finding 1: None of existing efforts on improving installing strate-

gies could resolve A-failures, while smart strategies with back-

tracking could resolve B-failures with extra resources.

Considering all 84 unsolvable dependency cuts that cause either
A-failures or B-failures, we measure the number of library versions
to loosen at least in order to connect associated version constraints
of the concerned unsolvable cuts. For example, for the cut #3 shown
in Fig. 4, there is only version redis 3.0.0 to directly connect the
two constraints, i.e.,“>=2.10.0, <=2.10.6” and “==3.0.0”. We call
the distance (i.e., how far are the concerned version constraints
connect to each other with the least expansions) for this unsolvable
cut being one. We observe that among the 84 unsolvable cuts, 13
cuts are with distance being one and can become solvable if one
more version is allowed for version constraints, e.g., redis 3.0.0
can be allowed if loosening “>=2.10.0, <=2.10.6” to “>=2.10.0,
<=3.0.0” for cut #3 in Fig. 4. In our study, 23/38 cuts can become
solvable with no more than five/ten neighboured versions being
loosened. For example, cut #1 in Fig. 6 can become solvable if
two neighboured versions are allowed for version constraints, e.g.,
constraint “urllib3<1.25” being loosened to “urllib3<=1.25.2”.

Finding 2: Loosening version constraints can be useful. For un-

solvable dependency cuts, 15.5% (13/84) can become solvable by

loosening one more adjacent version, and 27.4%/45.2% can become

solvable by loosening no more than five/ten versions.

For the remaining DC issues that contain no unsolvable cuts,
we also observe that not all installers can smoothly install the root
library due to their specialized installing strategies. For example,
Pip legacy strategy [15] (before 20.3) would typically choose the
latest version for the library that satisfies the concerned version
constraints, and conduct its installation following in a BFS-alike
order with guarantee upon a topological order only. Due to its spe-
cialized installing order, we observe that it met 33 building failures
to those 49 DC issues. Fortunately, with extra resources allowed

for backtracking and knowledge base analyses, Pip backtracking
(after 20.3) and smartPip can build all these cases smoothly.

Symptom 3: 59.0% (49/83) DC issues contain no unsolvable cut. Still,

some installers may incur building failures due to their specialized

installing strategies (a.k.a., C-failure). Fortunately, SOTA installers

can resolve them smoothly.

By digging into the total of 201 solvable dependency cuts associ-
ated with both B-failures and C-failures, we observe that although
solvable, over 50% dependency cuts (111/201) are eventually with
limited solutions (no more than five acceptable versions), which can
leave threats for evolution. For example, as in Fig. 3, there are only
two acceptable solutions (pyyaml 5.1.1 and pyyaml 5.1.2) for
this solvable case. More severely, 35.8% (72/201) dependency cuts
result in only one unique solution when solving the conjunction
of the concerned version constraints. This is mainly due to the in-
volvement of a pinned version constraint (e.g., “urllib3==1.25.2”)
which specifies one unique library version.

Finding 3: Over 50% solvable cuts can result in limited solutions in

dependency solving, leaving potential threats for evolution.

Although limited solutions do not result in building failures at
the moment, it leaves potential threats for future evolution since
any additional version constraint that may be introduced in the
future can easily cause the unsolvable problem. Moreover, among
all unsolvable cuts, there are over 40% cuts involving at least one
pinned version constraint and can result in extremely limited solu-
tions (only one acceptable library version). Therefore, we can see
that strict version constraints like the pinned ones can not only
lead to unsolvable cuts but also limit solutions to solvable ones.
Finding 4: Strict version constraints like pinned ones can lead to

unsolvable or limited solutions in dependency solving, and thus

version constraint loosening can be desirable.

Answering RQ1: Loosening version constraints (especially pinned

ones) can be useful for both resolving DC building failures caused

by unsolvable cuts and allowing more solutions for solvable cuts

in dependency solving.

3.4 RQ2: Developing Status and Practice

From Fig. 5, we can see that: (1) the number of dependent libraries
by a project ranges from several to hundreds, and vary across
projects, (2) over 50% projects specify more than 10 libraries in their
dependency, and around 10% projects import more than 50 libraries,
which may incur dependency conflict issues with high possibilities,
and (3) libraries evolve quickly with versioning gaps of only several
months for new versions, with 48 total versions on average. These
together put extreme pressures on developers to maintain suitable
version constraints for importing third-party libraries.

Observation 1: Developers tend to import a large amount of third-

party libraries and these libraries usually evolve quickly, resulting

in non-trivial efforts on dependency maintenance.

From Subject-B, we collect all written version constraints for
those 104 libraries from projects’ configuration scripts (i.e., a total
of 109,129 version constraints). Among all, we observe that 93,345
(85.5%) version constraints are pinned (using “==” to declare one

202

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Wang et al.

0 10 50 100

∆API

∆LOC

(a) ΔLOC and ΔAPI (%) between neighbored library versions

0 10 50 100

All

Direct

(b) Proportion (%) for directed and all traced callings

Figure 7: Statistical data about library versioning or usage

specific library version only). Such rates also hold consistently over
80% concerning different scales of projects, e.g., 1k–5k: 84.6%, >50k:
81.9%. We conjecture that this may because in practice developers
usually directly freeze and export their default execution environ-
ment during development into a default configuration script by
“pip freeze”. In this way, default pinned version constraints [47] can
be generated [13], and one can later restore this environment easily
by “pip install”. In this case, as long as any upstream or downstream
projects depend on the same library but require any other version,
“unsolvable” disasters (leading toA-failures and B-failures as studied
in RQ1) would happen.

Observation 2: Developers prefer to write strict version constraints,

and this can easily cause unsolvable cuts leading to both A- and

B-failures.

As we studied in RQ1, loosening might be optional for relaxing
such strict version constraints as pinned ones to resolve DC building
failures. However, loosening any version constraint safely needs
to protect the project’s behavior, and it requires quite an effort for
analyzing realizations for the concerned project and the library’s
all optional versions. It can be tedious and somehow infeasible in
practice to conduct a full analysis due to code scales. We then dig
into how libraries evolve and how developers call library APIs in
practice to facilitate a feasible loosening mechanism.

When investigating how each library evolves between its two
neighbored versions, we emphasize on those functions and lines
of codes have been either modified or newly added (a.k.a., ΔAPI
and ΔLOC) in the latter version, are shown in Fig. 7. We observe
that after discarding the first version for each library, 34% versions
evolve less than 1% functions only, and 61% library versions evolve
less than 5%. Only 10% versions evolve more than 20% functions.
This denotes that during evolution, libraries tend to evolve limited
functions only. We also investigate how projects usually invoke
functions through APIs from third-party libraries. For each project-
library pair in Subject-B (a total of 4,511 subjects, concerning 4,511
projects for 104 third-party libraries) as aforementioned, we dig
into how the project invokes APIs from its associated library in the
collection. Typically, one would use “import” or “from import’ to
import module(s) from libraries, and then invoke APIs whenever
needed by developers in developing the project. For each subject, we
recursively track all modules from its associated project that import
the concerned library and then analyze how many APIs/functions
from the library are truly invoked in the project (clearly specified in

the project code, and definitions successfully located in the library
code). For example, project “likyoo/change_detection.pytorch”
requires library “albumentations” with constraint “==1.0.3”. We
track 8 APIs directly invoked in the project, and by manually in-
specting their definitions in the library, we can together track an-
other 11 inner functions indirectly called in this library, which only
occupies a minuscule portion of the library’s functionalities (with
over 700 functions supported in total). Similar observations hold
in most of our subjects as shown in Fig. 7. Directly invoked APIs
usually take less than 1% among all library functions and indirectly
invoked ones may together increase the ratio to still no more than
5% (can be also analyzed by our LooCo later).

Practice 1&2: Libraries typically evolve quickly but with very

limited modifications, and projects usually invoke only limited

functionalities from libraries during development.

Therefore, we can see that upon Practice 1 and 2, a feasible
loosening mechanism to maintain the project’s consistent behavior
does not require a full analysis of the whole realization of both
the project and library with candidate versions. We only need to
protect the library contexts that are truly used in the project, thus
motivating our loosening mechanism upon on-demand call graphs
starting from entrance APIs.

Answering RQ2: Only limited library functionalities participate

in project development, and this inspires one to potentially resolve

DC building failures by loosening library versions with behavior-

consistency validation.

4 APPROACH

4.1 Insight and Overview

To resolve DC building failures by loosening version constraints,
the kernel question is “how to examine whether a project can behave

consistently upon a new version 𝑣2 of its dependent library 𝑙?” Gen-
erally, suppose a project depends on a library 𝑙 with an acceptable
version 𝑣1 (base version) to reuse library functionalities by a few 𝑙 ’s
APIs. We consider that if all called APIs and any parts transitively
called in the library have not been modified between 𝑣1 and 𝑣2, the
project should behave consistently in between. Thus, LooCo can
loosen the project’s version constraint for 𝑙 to 𝑣2. LooCo’s workflow
is shown in Fig. 8. It would first scan the whole project to obtain
all entrance APIs for how project 𝑝 uses library 𝑙 based on a base
version 𝑣1 (Step 1), and then, tracking such entrance APIs, LooCo
would trace the remaining library parts that are transitively called
via constructing an on-demand call graph (Step 2). Then, LooCo
would generate version diffs between 𝑣1 and 𝑣2 (Step 3). Combining
both version diffs and the constructed call graph, LooCo can sug-
gest to loosen version constraints to 𝑣2 as long as they do not have
any shared content, suggesting that any library part in 𝑙 that are
directly and transitively used by the project have not been evolved
between 𝑣1 and 𝑣2. Otherwise, loosening is risky (Step 4).

4.2 Step 1: Entrance API Extraction

This step aims to extract all project 𝑝’s entrance APIs for using
library 𝑙 . Typically, to reuse library functionalities, Python projects
can invoke the library APIs by both long qualified names like
img.img_to_graph, T.img_to_graph, np.reshape and shortened

203

Automatically Resolving Dependency-Conflict Building Failures via Behavior-Consistent Loosening ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Library version
(base)

Calling snippet for
library APIs

Project

Version
constraint

Call graph

Library version
(for examination)

Version diffs
V1 V2

Loosen constraint
to v2?

Safe!
Risky!

V1
Step3

Versioning Diff Generation

Step1
Entrance API Extraction

Step2
On-demand CG Construction

Step4
Loosening Analyses

Figure 8: LooCo workflow

ones like API_Name (img_to_graph). We model the entrance APIs
for the library no matter whether they are called by long or short-
ened API names to a consistent style of a fully qualified name
A.B.C.API_Name, which specifies the path, module, class, and API
name for any concerned library API. Therefore, given project 𝑝 and
library 𝑙 with base version 𝑣1, this step tries to exact entrance APIs
with fully qualified names to exhibit 𝑙 ’s functionality used by 𝑝 .

Considering that developers may follow diverse ways to import
library, LooCo adopts a two-phase exaction mechanism (“extract-
first-localize-next”) for obtaining such entrance APIs. First, LooCo
adopted and refined an existing tool DLocator [51] to extract all
𝑙 ’s APIs that have been called in the project code. Note that, we
addressed DLocator’s limitations which can lead to unexpected
entrance APIs being missed during its extraction, e.g., failing in
processing the “import *” cases, and ignoring APIs called by non-
call AST nodes. Note that, solely scanning the project code may
not precisely exact library APIs and obtain the corresponding fully
qualified names since the library codes are invisible now. There-
fore, in this phase, LooCo aims to exact all possible entrance APIs
for 𝑙 that may be called by the project and aim to exact entrance
APIs conservatively first. Second, to avoid possible mistakes in API
extraction, LooCo then conducts a localization phase to localize
the realization body of any exacted library API in the last phase by
scanning library 𝑙 ’s code of base version 𝑣1. This manages to filter
out any mistakenly extracted calls for library APIs, and assign the
expected fully qualified API names for all successfully filtered ones.

As such, LooCo now exacts a set of entrance APIs for library 𝑙
concerning its API usage in project 𝑝 , i.e., 𝑆𝐴 = {𝑎𝑝𝑖0, 𝑎𝑝𝑖1, . . . , 𝑎𝑝𝑖𝑛},
each of which specifies a specific API 𝑎𝑝𝑖𝑖 in 𝑙 (with its fully quali-
fied name) being called by 𝑝 .

4.3 Step 2: On-demand CG Construction

This step aims to construct a call graph slicing from the entrance
APIs obtained in the last step. Considering the set of entrance APIs
being extracted to be 𝑆𝐴 = {𝑎𝑝𝑖0, 𝑎𝑝𝑖1, . . . , 𝑎𝑝𝑖𝑛}, LooCo would
track each entrance API in 𝑙 ’s 𝑣1 to slice all internal parts (e.g.,
function, method, class, etc.) transitively called by project 𝑝 .

To obtain such, LooCo would not need to construct a full call
graph for library 𝑙 , but only a partial one that called from the
obtained entrance APIs in 𝑆𝐴 . Considering our observations in em-
pirical study, i.e., limited 𝑙 ’s APIs are normally called by projects,
we can expect that such an on-demand call graph would be much
easier and feasible in practice. Therefore, to slice a call trace in-
cluding possible concerned library functions, class methods, and
classes themselves (indicating constructors called), LooCo analyzes
each obtained entrance APIs transitively, and thus composes an

on-demand call graph by merging all call traces for these obtained
entrance APIs. Since LooCo aims to loosen 𝑝’s version constraints
for 𝑙 , we consider capturing the possible calls in the sliced call
trace for 𝑙 ’s directly dependent library as well. Therefore, for each
sliced node in the call trace, we logged a tuple of its necessary
information including node name, caller, callee, and dependency
location. For example, for a inner-called node (function 𝑓 , method
𝑚, class 𝑐) that is called and realized by 𝑙 itself, LooCo would col-
lect < 𝑓 /𝑚/𝑐, 𝑓2, 𝐴.𝐵.𝐶.𝑓 /𝑚/𝑐, 𝑙 >, representing 𝑓 /𝑚/𝑐 is called
by 𝑓2 and realized by library 𝑙 in 𝐴.𝐵.𝐶.𝑓 /𝑚/𝑐 . For a outer-called
node < 𝑓 /𝑚/𝑐, 𝑓2,−, 𝑙2 > represents that 𝑓 /𝑚/𝑐 is called by 𝑓2 and
realized by 𝑙 ’s dependent library 𝑙2, with realization unknown.

To do so, LooCo refines code2flow [1] to analyze possible calls
traced from the obtained entrance APIs in Step 1 by tracking all
possible calls in the AST structure with an additional definition-
mapped domain supported. As a result, LooCo’s call graph analyses
can exhibit comparable performance to the state-of-the-art Python
analyzer PyCG [49], which would be further discussed in Section 6.

4.4 Step 3: Versioning Diff Generation

This step is to construct the differences for library 𝑙 ’s realization
between its base version (𝑣1) and the version to loosen (𝑣2). We
consider the contents of both 𝑙 ’s code and configuration scripts.
Concerning the difference of 𝑙 ’s code, LooCo compares 𝑙 ’s 𝑣1 realiza-
tion to 𝑣2 by constructing code diffs with the aid of filecmp [4] and
difflib [3], and records the full names of functions/methods/classes
that are defined in 𝑣1, but modified (except modifying comments
only) or deleted in 𝑣2. This would produce a list of all modified
components (function, method, class) during 𝑙 ’s evolving from 𝑣1
to 𝑣2, namely, 𝐷𝑖 𝑓 𝑓𝑐𝑜𝑑𝑒 = {𝑓1,𝑚2, 𝑐3}. Concerning the difference
of 𝑙 ’s configuration, LooCo compares 𝑙 ’s configuration scripts be-
tween 𝑣1 to 𝑣2 and obtained a list of 𝑙 ’s dependent libraries whose
dependencies have been modified during 𝑙 ’s evolution from 𝑣1 to 𝑣2,
either deleted or modified with a new version constraint, 𝐷𝑖 𝑓 𝑓𝑙𝑖𝑏 .

4.5 Step 4: Loosening Analyses

This step would analyze the on-demand call graph obtained in Step
2 and versioning diffs (𝐷𝑖 𝑓 𝑓𝑐𝑜𝑑𝑒 and 𝐷𝑖 𝑓 𝑓𝑙𝑖𝑏) obtained in Step 3
to examine whether 𝑝’s dependency on 𝑙 can be further loosened
to 𝑣2. LooCo would suggest to loosen as long as all nodes in con-
structed call graph satisfy conditions: (1) if the node associates to
an outer call 𝑓 from an indirectly dependent library 𝑙2, 𝑙2 must not
be contained in 𝐷𝑖 𝑓 𝑓𝑙𝑖𝑏 ; (2) if the node associates to an inner call
𝑓 from the library 𝑙 under examination, 𝑓 must not be contained
in 𝐷𝑖 𝑓 𝑓𝑐𝑜𝑑𝑒 . Otherwise, LooCo would not suggest loosening 𝑝’s
dependency on 𝑙 to 𝑣2. Note that, LooCo works with its behind

204

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Wang et al.

insight of only loosening 𝑝’s dependency on 𝑙 to 𝑣2 as long as all
𝑝’s called parts in 𝑙 have not been modified. However, we do admit
that even some modifications (i.e., equivalent code changing) for
these parts may not affect 𝑝’s behaviors as well when using 𝑙 ’s new
version. For safety, we leave LooCo as such in a conservative way
to facilitate its feasibility and automation at the same time.

4.6 LooCo Realization and Application

LooCo is proposed to solve the kernel question for examining
whether the analyzed Python project can behave consistently upon
its dependent library 𝑙 with a new version 𝑣2, a.k.a., safe for loosen-
ing 𝑣2. In practice, suppose the project 𝑝 and any of its imported
library 𝑙 declared in the configuration script. Considering differ-
ent types of version constraints originally written by developers,
LooCo can be applied as follows. (1) For the pinned constraint
which specifies one concrete version only, e.g., 𝑙 == 𝑣0, LooCo can
treat 𝑣0 as the base version and examine any 𝑙 ’s accessible versions
(recommend to start forward and backward from 𝑣0) in the market
for possible loosening. (2) For the constrained one which may give a
range of acceptable versions, e.g., 𝑣1 <= 𝑙 <= 𝑣2, LooCo can choose
any acceptable version satisfying the original constraint (e.g., 𝑣3
when 𝑣1 <= 𝑣3 <= 𝑣2) as the base version, and any version can be
loosened as long as LooCo believes safe for loosening, suggesting
the project’s consistent behavior between 𝑣1 and 𝑣2.

By doing so, upon the project’s existing configuration script,
LooCo can examine all accessible library versions that are not in-
cluded originally, and loosen version constraints automatically as
relaxed as possible. After that, LooCo would suggest revising the
configuration script with concrete suggestions with loosened ver-
sions for any specific library. Moreover, due to LooCo’s superiority
on tracking the project’s called APIs for each library (e.g., 𝑙), LooCo
additionally suggests removing some original version constraints
if none of 𝑙 ’s APIs is called in 𝑝 , i.e., 𝑆𝐴 = ∅.

5 EVALUATION

5.1 Experimental Preparation

5.1.1 Research Questions. We raised the following two research
questions to evaluate LooCo’s performance on loosening version
constraints and resolving DC building failures.

RQ3 (Loosening Performance): Can LooCo effectively loosen
version constraints for Python projects’ imported libraries? How
efficiently can this be done?

RQ4 (Resolving Usefulness): How useful is LooCo for resolv-
ing DC building failures by its automatic constraint loosening?

5.1.2 Design and Setup. For RQ3, to evaluate LooCo’s perfor-
mance on loosening version constraints for projects when import-
ing third-party libraries, we use Subject-B in Section 3, which con-
tains 4,511 open projects for the collected 104 third-party libraries,
thus 4,511 project-library pairs for experiments with a version
constraint written by developers originally. For each pair, we use
LooCo to loosen the project’s concerned version constraint upon
the associate library as possible. We evaluate LooCo’s effectiveness
bymeasuring the number of new library versions LooCo can loosen
and use the consistency of behavior between the loosened version
and the original version on test cases to validate the correctness

Table 1: Loosen levels of LooCo’s results (#)

Level L0 L1 L2 L3

Pinned (3,754) 2,513 (66.9%) 919 (24.5%) 165 (4.4%) 157 (4.2%)

Constrained (757) 493 (65.1%) 206 (27.2%) 32 (4.2%) 26 (3.4%)

All (4,511) 3,006 (66.6%) 1,125 (24.9%) 197 (4.4%) 183 (4.1%)

of LooCo’s loosening. And we evaluate LooCo’s efficiency by the
time cost when applying LooCo to examine whether a project’s
version constraint can be loosened to a certain library version. For
RQ4, to evaluate LooCo’s loosening usefulness on resolving DC
building failures, we use Subject-A in Section 3, containing real-
world DC issues with 285 dependency cuts (three removed due
to only one version constraint for the root library) representing
dependency among all practical building possibilities. By similarly
applying LooCo to loosen each issue’s related version constraints,
we examine whether and how the concerned DC building failures
are resolved and thus evaluate LooCo’s usefulness.

5.1.3 Configuration. All experiments were conducted on a server
with two 12-core Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz and
503GB RAM, installed with Ubuntu 20.04.1 LTS and Python 3.8.

5.2 RQ3: Loosening Performance

We evaluate LooCo’s loosening effectiveness by measuring how
many versions can be loosened for each project concerning the
associated library in the 4,511 pairs. Then, we validate LooCo’s
loosening results by combining both test suite validation and de-
velopers’ feedbacks. Finally, we measure LooCo’s time overhead.

5.2.1 Loosening Results. For the studied 4,511 project-library pairs,
we first measured how many new versions can be further loosened
when applying LooCo, to investigate its loosening effectiveness. By
classifying LooCo’s loosen effectiveness by the number of loosened
versions, we design four levels with increasing numbers of loos-
ened versions, i.e., L0 (no new version loosened), L1 (1–5 versions
loosened), L2 (6–10 versions loosened), and L3 (over 10 versions
loosened). As shown in Table 1, LooCo successfully loosened ver-
sion constraints for 1,505 (33.4%) projects’ imported libraries, with
1–5 versions loosened (L1) for 1,125 (24.9%) projects, 6–10 versions
loosened (L2) for 197 (4.4%) projects, and over 10 versions loosened
(L3) for 183 (4.1%) projects, with 5.5 loosened versions on average.

5.2.2 Loosening Validation. To validate LooCo’s loosening results,
we filtered out 47 pairs among all collected project-library pairs
with the following requirements: (1) the associated project is pro-
vided with built-in test suites (e.g., Pytest); (2) built-in test suites
can work smoothly under the original dependency configuration,
and work inconsistently when uninstalling the associated library,
thus covering necessary functionality for testing this library depen-
dency; (3) LooCo suggests loosening new library versions. For 47
collected pairs, the average test code coverage of those obtained
projects’ test suites’ is 69.5%(min: 28%, max: 100%). Then, for each
filtered project-library pair, we ran test suites under both library
versions satisfying its original configuration and installing LooCo’s
suggested versions. We examined whether test suites produce con-
sistent behaviors between such two executions. Among all, LooCo
in total suggests loosening existing version constraints for 254 new

205

Automatically Resolving Dependency-Conflict Building Failures via Behavior-Consistent Loosening ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

library versions, and test suites behave completely consistently for
248 (97.6%) library versions. The only exceptions are pair #598 (i.e.,
project ServerlessChalicePlatform upon library chalice) and
#325 (i.e., project mlcomp upon library albumentations). We dig
a little deeper and find out that both their inconsistency behav-
iors under test are due to the conflict between LooCo’s suggested
versions and our local experimental environment (i.e., PyTest and
Python 3.8). After neglecting such conflicts and installing LooCo’s
suggested versions forcibly, consistency behaviors remain hold.

5.2.3 Feedback on LooCo. We sent LooCo’s suggestions to de-
velopers with loosened versions. Until Aug 2023, we randomly
sent over 600 reports and received 66 responses from developers
(covering 60 project-library pairs). Among these 66 responses, we
achieved encouraging feedback, with details on our website [9].
49 developers (74.2%) have confirmed LooCo’s loosening plans,
and most developers (38/49) have already refined their dependency
following LooCo’s suggestions, either asking us for pull requests
(27/38, with 21 merged already) or resolving themselves (11/38)
exactly following LooCo’s suggestions.

We also received valuable responses from developers. Develop-
ers do admit that they typically use “pip freeze” for convenience
and may lack sufficient dependency analyses, e.g., “Using strict

version dependency does seem like a mistake or rather something I

overlooked while using pip freeze. Loosening is a good idea.” in report
#2688 [19]. They indeed appreciate LooCo’s loosening suggestions,
e.g., “Thanks for the suggestion about the automatic tool for depen-

dency analysis. I appreciate the thought, . . .we don’t have anything

like that in place.” in report #2135 [18], “PR always welcome, and

really sorry that I just notice this issue.” in report #700 [21], and
“You’re right. I tested Slips with redis 3.5.2 and it’s working fine.”
in report #282 [20].

5.2.4 Overhead. We also measured the time cost when applying
LooCo to loosen a project’s version constraint for a certain library.
On average, LooCo spent 0.4s (min: 0.04ms, max: 54s) to make its
examination per candidate version to loosen. Despite of LooCo’s
analyses, LOCs of each project-library pair also affect the final time
cost, e.g., the LOC of the project in pair #4470 is about 3.7M, some-
how explaining its relatively large time overhead (54s). Considering
the varying scales, i.e., project (avg LOC: 12K, max LOC: 5M), li-
brary (avg LOC: 8K, max LOC: 104K), we believe LooCo is efficient
with nice scalability, owing to its on-demand CG analyses.

Answering RQ3: LooCo can loosen version constraints for Python

projects’ imported libraries effectively (avg: 5.5 versions expanded)

and efficiently (0.4s overhead per loosening). We received encour-

aging feedback (74.2% confirmed in responses) from developers.

5.3 RQ4: Resolving Usefulness

5.3.1 Loosening Constraints upon Dependency Cuts. To investigate
how LooCo’s constraint loosening can help resolve DC building
failures in practice. We use Subject-A introduced in Section 3, con-
taining 83 real-world DC issues with 285 dependency cuts for build-
ing. For each dependency cut, LooCo is conducted to loosen version
constraints accordingly. Table 2 illustrates LooCo’s results.

For the 84 dependency cuts that are originally unsolvable, LooCo
can effectively loosen version constraints for 68 cuts (81.0%, be-
sides those gray ones). Among all unsolvable cuts, 46 (54.8%) cuts
can become solvable (R1), and 11 (13.1%) cuts, although still un-
solvable, can bring closer distances for solving the conjunctions
in dependency (R2). For example, concerning the unsolvable cut
#6 for issue #99 as shown in Fig. 2, LooCo would perform its
analyses to both loosen project rdfframework’s dependency on
elasticsearch and also elasticsearch-dsl’s dependency on
library elasticsearch. As a result, the former one would be loos-
ened from >5.4.0, <6” to “>5.4.0, <=6.1.1” and the latter one
would be loosened from “>=6.0.0, <7.0.0” to “>=5.5.1, <7.0.5”,
thus solvable. This is tagged as #99, C6, rdfframework in Table 2.

For the remaining 201 dependency cuts that are solvable orig-
inally, LooCo effectively loosens version constraints for 125 cuts
(62.2%). Among all solvable cuts, LooCo’s loosening brings new
solutions for 101 cuts (50.2%) with 21 more solutions on average
(R4). For example, concerning the solvable cut #2 for issue #131 as
shown in Fig. 3, as a result, fly-circus’s dependency on pyyaml
would be loosened from “>=5.1.1, <5.2.0” to “>=5.1, <=5.3.1’.
Therefore, four more solutions can be obtained for dependency
solving, i.e., from pyyaml 5.1 to 5.3.1. This case is also tagged
as #131, C2, ssmash in Table 2. Therefore, we can observe that
LooCo’s loosening can effectively resolve unsolvable cuts to be-
come solvable and bring more solutions to the solvable ones.

5.3.2 Resolving DC Building Failures. Note that, when all associ-
ated dependency cuts are unsolvable, none of the existing optimiza-
tions on installing strategies can help, and they would all suffer
from severe building failures as studied in Section 3.

This relates to 8 DC issues with none solvable cut (a.k.a., causing
A-failures). LooCo can successfully resolve 6 (75%) of them by
achieving at least one solvable cut now. In this way, state-of-the-art
installers like smartPip can now build them smoothly. For the 26
DC issues that contain at least one unsolvable cut (a.k.a., causing B-
failures), LooCo can resolve 13 (50%) of them from being unsolvable
anymore, and alleviate the remaining (50%) by either letting any of
its “unsolvable” cut with a closer distance or “solvable” cuts with
more solutions (avg: 12 more solutions).

For the remaining 49 DC issues (although with all solvable ones
initially, but may still fail under some specific installing strategies
like Pip legacy, a.k.a., C-failures), LooCo can alleviate 31 (63.3%)
of them by making their associated cuts with more solutions (avg:
10 more solutions) and thus letting any accompanied installing
strategy to find a possible solution much easier. By comparing
LooCo’s suggestions with reports sent by Watchman, we observe
that LooCo suggests similarly asWatchman with concrete sugges-
tions of loosened version constraints for 20 cases (42.5%) among 46
cases that have been confirmed and resolved by developers. There
are 10 cases when LooCo’s suggestions are precisely the same as
the developers’ true resolutions, supporting LooCo’s usefulness on
resolving DC building failures.

Answering RQ4: LooCo can effectively resolve 54.8% unsolvable

cases to be solvable and allow 21 more solutions on average for

solvable cases, thus successfully resolving DC building failures

(unsolvable cases resolved for 75% A-failures and 50% B-failures,

and solutions expanded for 50% B-failures and 63.3% C-failures).

206

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Wang et al.

Table 2: Loosening effectiveness upon dependency cuts for LooCo with comparisons

Loosening results for all 285 dependency cuts (with the name shortened to save space)

U
n
s
o
l
v
a
b
l
e
C
u
t
s
(
8
4
)

#23,C2,Runcible #35,C1,cert-issu #40,C1,whats-bot #52,C1,CoinMarke #55,C1,COCO-Styl #56,C1,api-indot #58,C3,jawfish #58,C4,jawfish #58,C5,jawfish #58,C6,jawfish #58,C7,jawfish
#58,C8,jawfish #66,C1,django-cu #66,C7,django-cu #66,C8,django-cu #99,C6,rdfframew #116,C2,django-te #116,C3,django-te #116,C4,django-te #116,C5,django-te #116,C6,django-te
#116,C7,django-te #116,C8,django-te #116,C9,django-te #116,C10,django-te #116,C11,django-te #128,C1,reana-clu #260,C1,Osmedeus #261,C3,dork #261,C4,dork #261,C5,dork
#261,C6,dork #270,C2,Scriptax- #272,C3,grimoirel #278,C13,transifex #278,C14,transifex #278,C15,transifex #339,C3,docker-cr #339,C4,docker-cr #347,C2,django-we #349,C3,cert-mail
#349,C4,cert-mail #354,C6,agora-wot #364,C3,trio #364,C4,trio #364,C5,trio #50,C1,discord-w #77,C4,imgsync #77,C5,imgsync #99,C3,rdfframew #99,C7,rdfframew #117,C2,textX-lan
#117,C3,textX-lan #121,C1,django-gl #121,C4,django-gl #122,C1,django-gl #122,C4,django-gl #37,C2,crema #37,C3,crema #41,C1,zarp #59,C2,ltiauthen #99,C4,rdfframew
#124,C7,mockerena #124,C8,mockerena #124,C9,mockerena #124,C10,mockerena #337,C3,superdesk #366,C2,zelt #77,C1,imgsync #77,C6,imgsync #120,C3,django-gl #121,C2,django-gl
#121,C3,django-gl #121,C5,django-gl #121,C6,django-gl #122,C2,django-gl #122,C3,django-gl #122,C5,django-gl #122,C6,django-gl #354,C3,agora-wot #354,C5,agora-wot
#362,C2,piicatche #362,C3,piicatche #362,C4,piicatche

S
o
l
v
a
b
l
e
C
u
t
s
(
2
0
1
)

#3,C1,aucome #3,C2,aucome #5,C1,kindred #7,C1,crypto-wh #8,C1,OrcaSong #9,C2,pypmml-sp #9,C3,pypmml-sp #9,C4,pypmml-sp #9,C5,pypmml-sp #12,C1,twitterbo
#15,C1,AWSBucket #19,C1,unblock_y #20,C1,auto_craw #23,C1,Runcible #37,C1,crema #46,C1,Hidden-Fr #58,C1,jawfish #58,C2,jawfish #65,C1,dedis-clu #66,C6,django-cu
#73,C1,flask-mon #73,C2,flask-mon #86,C1,program-y #96,C1,python-bi #96,C2,python-bi #96,C3,python-bi #96,C4,python-bi #96,C5,python-bi #96,C6,python-bi #98,C1,py-redis-
#99,C1,rdfframew #99,C2,rdfframew #99,C5,rdfframew #108,C1,gmssl #114,C1,target-da #114,C2,target-da #116,C1,django-te #117,C1,textX-lan #118,C1,twitter_m #124,C1,mockerena
#124,C6,mockerena #125,C1,nornir #128,C2,reana-clu #130,C1,spartacus #130,C2,spartacus #131,C1,ssmash #131,C2,ssmash #133,C1,TMO4CT #133,C2,TMO4CT #257,C1,bakerydem
#257,C2,bakerydem #257,C3,bakerydem #257,C4,bakerydem #257,C5,bakerydem #257,C6,bakerydem #261,C1,dork #261,C2,dork #266,C1,pymacaron #266,C2,pymacaron
#270,C1,Scriptax- #271,C1,1a23-tele #271,C2,1a23-tele #271,C3,1a23-tele #271,C4,1a23-tele #271,C5,1a23-tele #271,C6,1a23-tele #278,C1,transifex #278,C2,transifex #278,C3,transifex
#278,C4,transifex #278,C5,transifex #278,C6,transifex #278,C7,transifex #278,C8,transifex #278,C9,transifex #278,C10,transifex #278,C11,transifex #278,C12,transifex #278,C16,transifex
#278,C17,transifex #278,C18,transifex #329,C1,fossor #331,C1,video-fun #331,C2,video-fun #331,C3,video-fun #331,C4,video-fun #337,C1,superdesk #339,C1,docker-cr
#339,C2,docker-cr #346,C1,djangoplu #347,C1,django-we #349,C1,cert-mail #349,C2,cert-mail #351,C1,antinex-u #363,C1,superdesk #363,C2,superdesk #364,C1,trio #364,C2,trio
#365,C1,incubator #22,C1,Indy-node #59,C1,ltiauthen #65,C2,dedis-clu #65,C3,dedis-clu #65,C4,dedis-clu #65,C5,dedis-clu #66,C2,django-cu #66,C3,django-cu #66,C4,django-cu
#66,C5,django-cu #124,C2,mockerena #124,C3,mockerena #124,C4,mockerena #124,C5,mockerena #125,C2,nornir #125,C3,nornir #272,C1,grimoirel #272,C2,grimoirel
#335,C1,tensor2te #337,C2,superdesk #341,C1,molo.surv #365,C2,incubator #366,C1,zelt #367,C1,zvt #367,C2,zvt #367,C3,zvt #2,C1,django-el #2,C2,django-el #2,C3,django-el
#2,C4,django-el #2,C5,django-el #2,C6,django-el #3,C3,aucome #8,C2,OrcaSong #8,C3,OrcaSong #8,C4,OrcaSong #8,C5,OrcaSong #8,C6,OrcaSong #9,C1,pypmml-sp #10,C1,toolium
#10,C2,toolium #10,C3,toolium #10,C4,toolium #10,C5,toolium #10,C6,toolium #10,C7,toolium #10,C8,toolium #10,C9,toolium #10,C10,toolium #10,C11,toolium #10,C12,toolium
#11,C1,WavesGate #11,C2,WavesGate #18,C1,ScrapyRed #18,C2,ScrapyRed #18,C3,ScrapyRed #18,C4,ScrapyRed #18,C5,ScrapyRed #77,C2,imgsync #77,C3,imgsync #78,C1,iprange-p
#78,C2,iprange-p #78,C3,iprange-p #78,C4,iprange-p #78,C5,iprange-p #82,C1,musco-tf #82,C2,musco-tf #83,C1,musco-pyt #83,C2,musco-pyt #92,C1,pyclics-c #92,C2,pyclics-c
#92,C3,pyclics-c #96,C7,python-bi #98,C2,py-redis- #98,C3,py-redis- #98,C4,py-redis- #98,C5,py-redis- #98,C6,py-redis- #107,C1,scvelo #107,C2,scvelo #107,C3,scvelo #107,C4,scvelo
#107,C5,scvelo #111,C1,sockeye #120,C1,django-gl #120,C2,django-gl #130,C3,spartacus #130,C4,spartacus #130,C5,spartacus #130,C6,spartacus #130,C7,spartacus #330,C1,xontrib-r
#331,C5,video-fun #353,C1,agora-py #354,C1,agora-wot #354,C2,agora-wot #354,C4,agora-wot #357,C1,aiocontex #359,C1,django_cl #359,C2,django_cl #359,C3,django_cl
#362,C1,piicatche

R1 : loosening with new solutions for the unsolvable cuts; R2 : loosening but still with no solution for the unsolvable cuts (closer distance); R3 : loosening but still with no solution for the unsolvable cuts
(same distance); R4 : loosening with new solutions for the solvable cuts; R5 : loosening but without new solution for the solvable cuts; R6 : no loosening by LooCo.

6 THREAT ANALYSES AND DISCUSSION

Threat Analyses. The subject selection for DC issues and open
projects may threaten the validity of our empirical study. To alle-
viate this threat, for DC issues, we leveraged DC issues collected
and studied in the prior studies [50, 53] and manually ensured their
reproducibility for nice data quality. For open projects, we select
libraries with high popularities (top 500 stars on GitHub), multi-
ple dependent projects (avg: 43 dependent projects), and varying
program scales for both projects and libraries to be representative.

Limitations of Static Analyses. Impreciseness in static anal-
yses may also threaten the validity of LooCo, e.g., unsupported
language features and complex Python semantics. Therefore, some
analyzed calls for third-party libraries may be missed during API
entrances and CG tracking in LooCo. This is a widely-admit chal-
lenge for static analysis research (not our focus in this paper). We
try to alleviate this by optimizing our static analyzer in LooCo
for comparable performance to the state-of-the-art tool PyCG [49]
(we do not directly use it since it does not support on-demand CG
construction and occasionally run into exceptions when analyzing
large programs [16]). We compare LooCo’s constructed call graphs
with those generated by PyCG upon its released benchmark, where
we achieve a 99.6% precision and 70.1% recall, comparable to PyCG
(precision: 98.9%, recall: 68.2%). Still, we admit that such limitations
of static analyses may bring both false positives/negatives to our

analyses, and this should be further investigated in the future to
better show and improve the safety of LooCo’s loosening.

LooCo’s Application. In this work, we use LooCo to analyze a
project’s directly dependent library for possible version loosening.
Therefore, it is possible that some outer calls are basically equiva-
lent even version constraints for some indirectly dependent library
change. However, since this would add obvious stresses to LooCo’s
analyses, for simplicity, we do not perform LooCo’s analyses itera-
tively for outer calls in the analyzed library. In practice, one may
choose to perform LooCo’s loosening analyses with the control of
certain depths for its loosening analyses along the dependency tree.
Moreover, due to the request of constructing call graphs, LooCo
is suitable when both source codes for projects and libraries are
available at the moment. We are working on adapting LooCo for
analyzing third-party libraries with binary releases only.

SemVer Comparison. Semantic versioning (SemVer) [22] uses
structured versioning schemes (MAJOR.MINOR.PATCH) to suggest
loosening plans for developers, which is similar to our approach.We
discuss their differences from two aspects. First, in order to loosen,
SemVer indeed relies on developers to first follow certain specifi-
cations in versioning during the development, which can hardly
hold in practice. In existing work [30], around 75%/30% libraries
are observed to violate SemVer specifications in some/all versions,
thus unreliable to obtain compatible versions for loosening directly
in this way. When we attempt to loosen the studied 47 projects

207

Automatically Resolving Dependency-Conflict Building Failures via Behavior-Consistent Loosening ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

with built-in test suites as aforementioned following SemVer, we
observed that loosening using SemVer suggests versions with ob-
viously inconsistent behaviors for 19.1% projects, exhibiting its
unreliable loosening.

Second, since SemVer normally suggests loosening version con-
straints to new versions with consistent MAJOR or greater MI-
NOR numbers, this can be quite general and not sensitive with
respect to each dependent project, possibly too strict. Owing to
LooCo’s project-aware analyses, our loosening plan can be more
delicate and relaxed with higher possibilities for loosening. For
example, in our evaluation, LooCo can loosen an original version
constraint “telepot==12.7” for pair#4297 to versions a smaller ver-
sion of MINOR, e.g., telepot 12.0, or to versions with different
MAJOR numbers, e.g., telepot 11.0 and 10.5.

7 RELATED WORK

Software Ecosystem and Library Versioning. Third-party li-
braries and sheets contribute to code and data reuse in developing
intelligent and evolving software [48, 52, 58]. In practice, projects
co-evolve with each other based on their intra-dependencies in
software ecosystems and many existing work studied these de-
pendencies. Kula et al. [42] investigated dependency migrations
for Java and observed severe outdated dependency problems [52].
Latendresse et al. [43] studied the differences between installed de-
pendencies and production dependencies in JavaScript projects and
suggested that production dependencies should be given a higher
priority. Hejderup et al. [34] constructed an exhaustive dependency
CG for the ecosystem. Zhang et al. [57] studied API compatibility is-
sues by analyzing the characteristics of Python API usages. Xing et
al. [59] and Johannes et al. [35] emphasized on avoiding API-usage
issues like API-breaking changes [25], and Eric [37, 38] focused
on API-breaking changes by identifying problematic codes during
versioning. Jia et al. [40] proposed DepOwl to avoid incompati-
ble library versions, e.g., with backward or forward incompatible
changes (e.g., removing or adding an interface). Ma et al. [45] fo-
cused on cross-project bugs in the ecosystem and how they affect
downstream and upstream projects. Wu et al. [55] studied potential
threats of upstream vulnerabilities to downstream projects in the
Maven ecosystem by a fine-grained analysis of calls from down-
stream projects to upstream projects.

Dependency Inference and Conflict Resolution. Towards
inferring dependencies for Python projects, Ye et al. [56] proposed
PyEGo to construct knowledge graphs and inference environment
dependency for Python projects. Similarly, PyCRE [27] infers more
exhaustively by analyzing the runtime environment via domain
knowledge graphs. Based on inferred dependencies, different strate-
gies target resolving potentially conflicting issues. Wang et al. [53]
detected typical patterns of DC issues in PyPI ecosystem, and Artho
et al. [24] conducted an empirical study on conflict defects andmade
recommendations for prevention and detection. Jafari et al. [39]
surveyed a classification of dependency smells in JavaScript and
proposed DependencySniffer for detecting dependency smells. Cao
et al. [26] investigated three types of dependency smells in Python
projects, i.e., missing dependency, bloated dependency, and version
constraint inconsistency, and proposed PyCD to extract such depen-
dencies respectively. Maven [10] leverages its package management

for the Java ecosystem by a nearest-win strategy to resolve depen-
dency for DC issues, which is also studied by Foo et al. [30] for
resolution via an efficient static checking. Pip [12] optimized its
dependency-solving strategy with backtracking, and smartPip [50]
further optimizes it with a powerful strategy with controllable costs.
In addition, some DC issues are due to conflicts with existing lo-
cal dependencies, in which case they can be solved by having the
project use a separate Python environment [53]. Different from ex-
isting work that sticks to original version constraints, we choose to
automatically refine them for better quality to resolve DC building
failures. Therefore, we believe that LooCo can be a great comple-
ment to existing work with its refined version constraints.

Static Analyses for Python Projects. LooCo constructs call
graphs for Python projects. Despite Python popularities, there are
only a few Python static analyzers [28, 32, 33, 44, 49]. Pyan [28]
parses ASTs to extract Python projects’ call graphs but faces draw-
backs for inter-procedural flows of values and module imports, later
optimized with visualization in Code2graph [32, 33]. Depends [31]
obtains syntactical relations among source entities to generate call
graphs more precisely but does not support higher-order program-
ming. The state-of-the-art PyCG [49] performs the best but does
not support on-demand call graph generation. We realizes LooCo’s
static analyses with comparable performance to it.

8 CONCLUSION

Python projects commonly suffer DC issues and thus incurred build-
ing failures. In this paper, we have proposed a constraint refinement
approach LooCo to automatically loosen version constraints for
dependent libraries, assisting in resolving building failures with-
out sacrificing libraries’ behavioral consistency. The approach was
inspired by our empirical findings from real-world DC issues and
characteristics of their associated library version constraints, and
exhibited promising performance by effective loosening (avg. 5.5
versions expanded) and efficient execution (0.4s overhead per loos-
ening). Such automatic constraint loosening contributed to signif-
icant resolution of DC building failures, by transforming 54.8%
originally unsolvable cases into solvable ones and producing more
solutions (21 more on average) for original solvable cases. Neverthe-
less, LooCo is currently still restricted by syntactic consistency in
its code analysis (conservative in expanding versions), and we plan
to extend its capability by exploring potential semantic consistency
(finding further loosening space) in future.

9 DATA AVAILABILITY

The source code of LooCo and other resources are available on [9].

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for their
insightful comments and suggestions. This work was supported by
the Natural Science Foundation of China under Grant No. 61932021,
and the Natural Science Foundation of Jiangsu Province under
Grants (No. BK20202001 and BK20220771). The authors would also
like to thank the support from the Fundamental Research Funds for
the Central Universities of China (020214380102 and 020214912220),
and Collaborative Innovation Center of Novel Software Technology
and Industrialization, Jiangsu, China.

208

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Wang et al.

REFERENCES

[1] 2023. Code2flow. https://code2flow.com/, Accessed: 2023-08-24.
[2] 2023. Conda. https://docs.conda.io/, Accessed: 2023-08-24.
[3] 2023. Dfflib. https://docs.python.org/3/library/difflib.html, Accessed: 2023-08-24.
[4] 2023. Filecmp. https://docs.python.org/3/library/filecmp.html, Accessed: 2023-

08-24.
[5] 2023. Issue #131. https://github.com/garyd203/ssmash/issues/39, Accessed: 2023-

08-24.
[6] 2023. Issue #272. https://github.com/chaoss/grimoirelab-manuscripts/issues/136,

Accessed: 2023-08-24.
[7] 2023. Issue #56. https://github.com/ivanubi/api-indotel/issues/2, Accessed: 2023-

08-24.
[8] 2023. Issue #99. https://github.com/KnowledgeLinks/rdfframework/issues/24,

Accessed: 2023-08-24.
[9] 2023. LooCo website. https://agnes-u.github.io/LooCo/, Accessed: 2023-08-24.
[10] 2023. Maven. https://mvnrepository.com/repos, Accessed: 2023-08-24.
[11] 2023. PEP specifications. https://peps.python.org/, Accessed: 2023-08-24.
[12] 2023. PIP backtracking. https://pip.pypa.io/en/stable/topics/dependency-

resolution/, Accessed: 2023-08-24.
[13] 2023. PIP freeze. https://pip.pypa.io/en/stable/cli/pip_freeze/, Accessed: 2023-08-

24.
[14] 2023. PIP installer. https://pypi.org/project/pip/, Accessed: 2023-08-24.
[15] 2023. PIP legacy. https://pip.pypa.io/en/stable/user_guide/, Accessed: 2023-08-24.
[16] 2023. PyCG issues. https://github.com/vitsalis/PyCG/issues, Accessed: 2023-08-

24.
[17] 2023. Python Package Index. https://pypi.org/, Accessed: 2023-08-24.
[18] 2023. Report #2135. https://github.com/andylokandy/rqalpha-mod-minute/

issues/1, Accessed: 2023-08-24.
[19] 2023. Report #2688. https://github.com/gkeep/spotify-stats/issues/3, Accessed:

2023-08-24.
[20] 2023. Report #282. https://github.com/stratosphereips/StratosphereLinuxIPS/

issues/163, Accessed: 2023-08-24.
[21] 2023. Report #700. https://github.com/yihong0618/running_page/issues/282,

Accessed: 2023-02-03.
[22] 2023. SemVer. https://semver.org/, Accessed: 2023-08-24.
[23] Pietro Abate, Roberto Di Cosmo, Georgios Gousios, and Stefano Zacchiroli. 2020.

Dependency Solving Is Still Hard, but We Are Getting Better at It. In Proceedings

of the 2020 IEEE 27th International Conference on Software Analysis, Evolution and

Reengineering (SANER 2020). 547–551.
[24] C. Artho, R. D. Cosmo, K. Suzaki, R. Treinen, and S. Zacchiroli. 2012. Why Do

Software Packages Conflict?. In Proceedings of the 2012 IEEE/ACM 9th International

Conference on Mining Software Repositories (MSR 2012).
[25] Aline Brito, Laerte Xavier, Andre Hora, and Marco Valente. 2018. APIDiff: De-

tecting API breaking changes. In Proceedings of the 2018 IEEE 25th International

Conference on Software Analysis, Evolution and Reengineering (SANER 2018). 507–
511.

[26] Yulu Cao, Lin Chen, Wanwangying Ma, Yanhui Li, Yuming Zhou, and Linzhang
Wang. 2023. Towards Better Dependency Management: A First Look at Depen-
dency Smells in Python Projects. IEEE Transactions on Software Engineering 49, 4
(2023), 1741–1765. https://doi.org/10.1109/TSE.2022.3191353

[27] Wei Cheng, Xiangrong Zhu, and Wei Hu. 2022. Conflict-aware Inference of
Python Compatible Runtime Environments with Domain Knowledge Graph.

[28] Fraser D., Horner E., Jeronen J., and Massot P. [n. d.]. Pyan3: Offline call graph
generator for Python 3. https://github.com/davidfraser/pyan.

[29] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe. 2019.
Dependency Versioning in the Wild. In Proceedings of the 2019 IEEE/ACM 16th

International Conference on Mining Software Repositories (MSR 2019). 349–359.
[30] Darius Foo, Hendy Chua, Jason Yeo, Ming Yi Ang, and Asankhaya Sharma. 2018.

Efficient Static Checking of Library Updates. In Proceedings of the 2018 26th ACM

Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE 2018). ACM Press, Lake Buena
Vista, FL, USA, 791–796.

[31] Zhang G. and Wuxia J. 2023. Depends. https://github.com/multilang-depends/
depends, Accessed: 2023-08-24.

[32] G. Gharibi, R. Alanazi, and Y. Lee. 2018. Automatic Hierarchical Clustering of
Static Call Graphs for Program Comprehension. In Proceedings of the 2018 IEEE

International Conference on Big Data (Big Data). 4016–4025.
[33] G. Gharibi, R. Tripathi, and Y. Lee. 2018. Code2graph: Automatic Generation of

Static Call Graphs for Python Source Code. In Proceedings of the 2018 IEEE/ACM

International Conference on Automated Software Engineering (ASE 2018). 880–883.
[34] JosephHejderup, Arie van Deursen, and Georgios Gousios. 2018. Software Ecosys-

tem Call Graph for Dependency Management. In Proceedings of the ACM/IEEE

40nd International Conference on Software Engineering: New Ideas and Emerging

Results (ICSE-NIER 2018). ACM, New York, NY, USA, 101–104.
[35] Johannes Henkel and Amer Diwan. 2005. CatchUp! Capturing and Replaying

Refactorings to Support API Evolution. In Proceedings of the 27th International

Conference on Software Engineering (ICSE 2005) (St. Louis, MO, USA). Association

for Computing Machinery, New York, NY, USA, 274–283.
[36] Eric Horton and Chris Parnin. 2018. Gistable: Evaluating the Executability of

Python Code Snippets on GitHub. In Proceedings of the 2018 IEEE International

Conference on Software Maintenance and Evolution (ICSME 2018). 217–227.
[37] Eric Horton and Chris Parnin. 2019. DockerizeMe: Automatic Inference of

Environment Dependencies for Python Code Snippets. In Proceedings of the 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE 2019). IEEE,
Montreal, QC, Canada, 328–338.

[38] Eric Horton and Chris Parnin. 2019. V2: Fast Detection of Configuration Drift
in Python. In Proceedings of the 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE 2019). IEEE, San Diego, CA, USA, 477–488.
[39] Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, and

Nikolaos Tsantalis. 2022. Dependency Smells in JavaScript Projects. IEEE Trans.

Softw. Eng. 48, 10 (oct 2022), 3790–3807. https://doi.org/10.1109/TSE.2021.3106247
[40] Zhouyang Jia, Shanshan Li, Tingting Yu, Chen Zeng, Erci Xu, Xiaodong Liu, Ji

Wang, and Xiangke Liao. 2021. DepOwl: Detecting Dependency Bugs to Prevent
Compatibility Failures. In Proceedings of the 43rd International Conference on

Software Engineering (ICSE 2021). 86–98.
[41] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl. 2017. Structure and Evolution of

Package Dependency Networks. In Proceedings of the 2017 IEEE/ACM International

Conference on Mining Software Repositories (MSR 2017). 102–112.
[42] Kula, R. Gaikovina, German, M. Daniel, Ouni, Ali, Ishio, Takashi, Inoue, and

Katsuro. 2018. Do Developers Update Their Library Dependencies? An Empirical
Study on the Impact of Security Advisories on Library Migration. Empirical

Software Engineering 23 (2018), 384–417.
[43] Jasmine Latendresse, Suhaib Mujahid, Diego Elias Costa, and Emad Shihab.

2023. Not All Dependencies Are Equal: An Empirical Study on Production
Dependencies in NPM. In Proceedings of the 37th IEEE/ACM International Con-

ference on Automated Software Engineering (Rochester, MI, USA) (ASE ’22). As-
sociation for Computing Machinery, New York, NY, USA, Article 73, 12 pages.
https://doi.org/10.1145/3551349.3556896

[44] Y. Li. 2019. Empirical Study of Python Call Graph. In Proceedings of the 2019

34th IEEE/ACM International Conference on Automated Software Engineering (ASE

2019). 1274–1276.
[45] Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yang Feng, Zhaogui Xu, Zhifei

Chen, Yuming Zhou, and Baowen Xu. 2020. Impact Analysis of Cross-project
Bugs on Software Ecosystems. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering (ICSE 2020). ACM, Seoul South Korea, 100–
111.

[46] Fabio Mancinelli, Jaap Boender, Roberto di Cosmo, Jerome Vouillon, Berke Durak,
Xavier Leroy, and Ralf Treinen. 2006. Managing the Complexity of Large Free
and Open Source Package-Based Software Distributions. In Proceedings of the

21st IEEE/ACM International Conference on Automated Software Engineering (ASE

2006). IEEE, Tokyo, 199–208.
[47] Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. 2021. Fixing

Dependency Errors for Python Build Reproducibility. In Proceedings of the 30th

ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

2021), Cristian Cadar and Xiangyu Zhang (Eds.). ACM, Virtual Envent, Denmark,
439–451.

[48] Yuen Tak YU Sau-Fun TANG Pak-Lok POON, Man Fai LAU. 2024. Spreadsheet
quality assurance: a literature review. Frontiers of Computer Science (FCS) 18, 2
(2024), 182203.

[49] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and
Dimitris Mitropoulos. 2021. PyCG: Practical Call Graph Generation in Python.
In Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE 2021). IEEE, Madrid, ES, 1646–1657.
[50] Chao Wang, Rongxin Wu, Haohao Song, Jiwu Shu Shu, and Guoqing Li. 2022.

SmartPip: A Smart Approach to Resolving Python Dependency Conflict Issues. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2022). Oakland Center, Michigan, United States.
[51] Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai. 2020. Exploring How Deprecated

Python Library APIs Are (not) Handled. In Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE 2020). ACM, Virtual Event USA,
233–244.

[52] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng,
Yijian Wu, and Yang Liu. 2020. An Empirical Study of Usages, Updates and
Risks of Third-Party Libraries in Java Projects. In Proceedings of the 2020 IEEE

International Conference on Software Maintenance and Evolution (ICSME 2020).
35–45.

[53] Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao Wang,
Hai Yu, Shing-Chi Cheung, Chang Xu, and Zhiliang Zhu. 2020. Watchman:
Monitoring Dependency Conflicts for Python Library Ecosystem. In Proceedings

of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE

2020). ACM, Seoul South Korea, 125–135.
[54] R. Widyasari, Q. S. Sheng, C. Lok, H. Qi, and E. L. Ouh. 2020. BugsInPy: A

Database of Existing Bugs in Python Programs to Enable Controlled Testing
and Debugging studies. In Proceedings of the 28th ACM Joint European Software

209

https://code2flow.com/
https://docs.conda.io/
https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/filecmp.html
https://github.com/garyd203/ssmash/issues/39
https://github.com/chaoss/grimoirelab-manuscripts/issues/136
https://github.com/ivanubi/api-indotel/issues/2
https://github.com/KnowledgeLinks/rdfframework/issues/24
https://agnes-u.github.io/LooCo/
https://mvnrepository.com/repos
https://peps.python.org/
https://pip.pypa.io/en/stable/topics/dependency-resolution/
https://pip.pypa.io/en/stable/topics/dependency-resolution/
https://pip.pypa.io/en/stable/cli/pip_freeze/
https://pypi.org/project/pip/
https://pip.pypa.io/en/stable/user_guide/
https://github.com/vitsalis/PyCG/issues
https://pypi.org/
https://github.com/andylokandy/rqalpha-mod-minute/issues/1
https://github.com/andylokandy/rqalpha-mod-minute/issues/1
https://github.com/gkeep/spotify-stats/issues/3
https://github.com/stratosphereips/StratosphereLinuxIPS/issues/163
https://github.com/stratosphereips/StratosphereLinuxIPS/issues/163
https://github.com/yihong0618/running_page/issues/282
https://semver.org/
https://doi.org/10.1109/TSE.2022.3191353
https://github.com/davidfraser/pyan
https://github.com/multilang-depends/depends
https://github.com/multilang-depends/depends
https://doi.org/10.1109/TSE.2021.3106247
https://doi.org/10.1145/3551349.3556896

Automatically Resolving Dependency-Conflict Building Failures via Behavior-Consistent Loosening ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE 2020). 1556–1560.
[55] Yulun Wu, Zeliang Yu, Ming Wen, Qiang Li, Deqing Zou, and Hai Jin. 2023.

Understanding the Threats of Upstream Vulnerabilities to Downstream Projects
in the Maven Ecosystem.

[56] Hongjie Ye, Wei Chen, Wensheng Dou, Guoquan Wu, and Jun Wei. 2022.
Knowledge-Based Environment Dependency Inference for Python Programs.
(May 2022), 12.

[57] Zhaoxu Zhang, Hengcheng Zhu, Ming Wen, Yida Tao, Yepang Liu, and Yingfei
Xiong. 2020. How Do Python Framework APIs Evolve? An Exploratory Study.

In Proceedings of the IEEE 27th International Conference on Software Analysis,

Evolution and Reengineering (SANER 2020). 81–92.
[58] Ze-Lin Zhao, Di Huang, and Xiao-Xing Ma. 2022. TOAST:Automated Testing of

Object Transformers in Dynamic Software Updates. Journal of Computer Science

and Technology (JCST) 37, 1 (1 2022), 50–66.
[59] Zhenchang Xing and E. Stroulia. 2007. API-Evolution Support with Diff-CatchUp.

IEEE Transactions on Software Engineering 33, 12 (Dec. 2007), 818–836.

Received 2023-03-02; accepted 2023-07-27

210

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Dependency in Python Projects
	2.2 Building Failures and Dependency Conflicts

	3 Empirical Study and Motivation
	3.1 Research Questions
	3.2 Design and Setup
	3.3 RQ1: Issue Symptom and Cause
	3.4 RQ2: Developing Status and Practice

	4 Approach
	4.1 Insight and Overview
	4.2 Step 1: Entrance API Extraction
	4.3 Step 2: On-demand CG Construction
	4.4 Step 3: Versioning Diff Generation
	4.5 Step 4: Loosening Analyses
	4.6 LooCo Realization and Application

	5 Evaluation
	5.1 Experimental Preparation
	5.2 RQ3: Loosening Performance
	5.3 RQ4: Resolving Usefulness

	6 Threat Analyses and Discussion
	7 Related Work
	8 Conclusion
	9 Data Availability
	References

