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Abstract

Self-adaptive applications are becoming increasingly attractive, with the ability to
smartly understand their runtime environments (or contexts) and deliver adaptive
services, e.g., location-aware navigation or resource-sensitive suggestions. However,
due to inherent noises in the process of sensing and interpreting environmental infor-
mation, there is a growing demand for guarding the consistency of collected contexts
to avoid application misbehavior and, at the same time, minimize extra costs. Ex-
isting work attempted to achieve this by speeding up the kernel constraint checking
module inside the consistency guarding process. Most of these efforts were spent on
reusing previous checking results or parallelizing the checking process, but they all
leave one central step of constraint checking, i.e., link generation, untouched. In this
step, the checking engine provides reasons to explain the violation of constraints un-
der check. It occupies a substantial part of the total time cost. Focusing on this key
link generation step, we proposed MG, which deploys a rigorous analysis to auto-
matically identify and avoid redundancy in the link generation without harming any
correctness of the checking results. MG has been proven sound (always guarantee-
ing correctness) and complete (entirely removing redundancy). Moreover, based on
our observation that MG’s redundancy elimination also assists another core step of
constraint checking to reduce unnecessary computation further, we additionally en-
hance MG with an escape-condition optimization to escape unnecessary evaluation
of truth values to further improve the efficiency of constraint checking in an aspect
other than link generation. We call it MG+ for distinguishing. Our experiments with
synthesized and real-world consistency constraints reported that, compared with ex-
isting work, MG eliminates all link redundancy (83% to 0), and based on it, MG+
further reduces significant truth value calculations (e.g., 49.74% reduction when
combined with ECC and Con-C). Generally, MG brought 14x–500x speed-ups in
link generation, and MG+ further made 1.2x–1.9x speed-ups in truth value evalu-
ation. Altogether, MG reduced the total constraint checking time up to 45.4%, and
MG+ reduced it up to 61.0%.
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1 INTRODUCTION

The rapid advancement of modern sensing and actuating technologies has led to a surge in the popularity of self-adaptive
applications across various domains, including location-aware navigators, self-driving vehicles1,2, cloud computing systems3,4,
and mobile apps5,6,7. These applications offer intelligent services by analyzing and interpreting their operational environments,
referred to as contexts8, and adjusting their behaviors accordingly. However, the presence of unavoidable and uncontrollable
environmental noise can cause discrepancies in the application contexts from their actual states, potentially resulting in incorrect
behaviors (for example, inaccurate location reporting9,10,11,12,13,14) or system failures.

Contexts naturally lack oracles to assess their correctness. Thus, various studies explored ways to detect and trace flaws in
contexts. One promising approach is checking the contexts against pre-specified rules, namely, consistency constraints9,10,11,
that should hold under laws in the application domain and the physical world—e.g., changes of a vehicle’s location should
never be faster than light. We should consider any violation of such constraints as a context inconsistency9,10,11 and report
it to later resolution15,16,17,18,19,20,21,22. As the constraint checking process aims to guard an application’s reliability by timely
detecting and handling anomalies at runtime, it should be effective and efficient to avoid compromising the application’s normal
functionalities10,11,23,24,25,26. Researchers proposed various techniques to this end, varying from simple correctness baseline
(Entire Constraint Checking, ECC9), to delicate incremental computation (Partial Constraint Checking, PCC11) and CPU/GPU-
based parallelization (Con-C23 and GAIN24).

It is extremely difficult to further improve the performance of constraint checking upon all these edge technologies. However,
the growing complexity and dynamicity of contexts has exceeded the capability of existing techniques27. In some scenarios
with ubiquitous cyber-physical interactions and huge-volume data, these techniques may miss over 90% inconsistencies25. The
performance of constraint checking techniques is confronted with a staggeringly huge challenge.

In this article, we approach the issue with a novel perspective. We categorize existing research endeavors, such as incremental
or parallel constraint checking, under the “making-it-faster” category. This means they focus on accelerating the constraint
checking process by speeding up every step in the process. Conversely, we introduce a new category, “making-it-less,” where
our aim is to decrease the computational workload by identifying and removing redundant computations that do not impact
checking results. If successful, this innovative approach could complement existing methods in a unique, orthogonal manner,
elevating their performance to unprecedented heights.

We dig into the constraint checking process and observe a two-step pattern that comprises all existing constraint checking
techniques, namely, truth value evaluation and link generation. The former step examines whether a given consistency constraint
is violated respecting the contexts under check by a truth value of True or False. The latter step generates a data structure named
link 9,10,11 to explain why the violation happens by identifying elements that contribute to the truth value. With the links, users
are able to locate and correct errors in the contexts. The link generation step consumes a large proportion (up to 45% according to
our later experiments) of the total checking time cost. However, a large part of links generated as intermediate results in this step
are redundant (23–100% according to the experiments) in the sense that they never affect the checking results (detailed analysis
in Section 3). Our “making-it-less” conjecture hinges on this observation. If possible, tracing and avoiding such redundancy
would lead to substantial efficiency improvements. Based on such an insight, the article studies the redundant link problem and
proposes a sound (always checking correctly) and complete (removing all redundancy) technique to prevent them.

Our proposed Minimized Link Generation technique (or MG) automatically identifies redundant links and prevents them
from being generated in advance. Compared to the existing practice of link generation, e.g., Complete Link Generation (or CG)
used in existing constraint checking techniques9,11,23, MG significantly reduces link generation by 23–100%. It achieves this via
a hybrid static-dynamic analysis, which first constructs a data structure named S-CCT that encodes a constraint’s static syntax
information and then evolves it with dynamic truth value information associated with the contexts during checking. We prove
that the S-CCT can mark all necessary generation sites for the final checking results, i.e., with these sites, we can guarantee
the correctness of the final results (soundness). We also prove that MG is complete, i.e., able to identify all redundant links and
prevent them from being generated. Moreover, MG is generic by design and handily applicable to all existing constraint checking
techniques. Furthermore, we observe a surprising benefit brought by MG: S-CCTs can also assist another core step, truth value
evaluation, of constraint checking. It indicates possibly unused truth values that do not get involved in computing the truth value
of the final result and are not required by any link (because these links are eliminated by the S-CCTs). Based on this observation,
we derive escape conditions to mark some of such truth values and avoid the evaluation of them. This optimization further



CHEN ET AL 3

boosts the efficiency of constraint checking. We add this extension to MG and devise an even more powerful technique MG+.
With these analyses and optimization, MG and MG+ significantly improve the performance of constraint checking techniques.

Our evaluation showed that: (1) MG realizes 100% link utilization (i.e., removing 100% redundant link generation), as com-
pared to existing work, which encounters severe link redundancy problem where 75–83% links are redundant; (2) When applied
to existing constraint checking techniques (e.g., ECC9, PCC11, and Con-C23), MG brings tens to hundreds times speed-ups
in link generation, and reduces the total constraint checking time up to 45.4%; (3) The evaluation also exhibits clear benefits
brought by MG+ to existing constraint checking techniques, which further reduces the constraint checking time up to 61.0%.

In summary, we make the following contributions in this article, where the second one and part of the third one are extended
over our previous work28:

• We propose Minimized Link Generation (MG) for efficient context inconsistency detection that can identify and avoid
redundant link generation in constraint checking and theoretically prove its soundness and completeness.

• We extend MG to MG+ with an escape-condition optimization for further efficiency in the truth value evaluation step and
also theoretically prove its correctness.

• We evaluate the performance of MG and MG+ and validate their effectiveness in minimizing link generation and reducing
truth value evaluation. We confirm that they lead to substantial efficiency improvements over existing constraint checking
techniques.

The remainder of this article is organized as follows. Section 2 uses an illustrative example to introduce the problem and
technical background. Section 3 reports a pilot study to motivate our work and then elaborates on our MG technique to identify
and eliminate redundant link generation. Section 4 extends MG to MG+, which can further reduce truth value evaluation by
an escape-condition optimization. Section 5 evaluates MG and MG+ under controlled experiments with exhaustive constraint
analysis and a case study with real-world data. Section 6 discusses the related work in recent years, and finally, Section 7
concludes this article.

2 BACKGROUND

In this section, we introduce preliminary concepts of constraint checking by an illustrative example.

2.1 Preliminary
Context and context pool. A context embodies information about an application’s runtime environment25. It can be modeled
as a finite set containing multiple elements. Each of these elements reflects a facet of the whole context. Consider a highway
charging system that tracks information about a traveling vehicle, including its license plate number, driving speed, and location,
and calculates highway tolls accordingly. The context that models vehicles recently driving by a highway gantry a is Ca =
{car1, car2,⋯}, wherein each element car𝑖 identifies one vehicle with some specific license plate number, driving speed, and
other information. As time elapses, contexts adapt to the changing environment, e.g., some cars may leave the highway, and some
new cars enter. Contexts relevant to the application are collected in a context pool. Respecting the highway charging system,
contexts associated with all the highway gantries constitute the system’s context pool.

Consistency constraint. For the highway charging system, gantries deploy cameras and sensors to track vehicles, but the
tracking process may be subject to sensor disturbance. The contexts are thus inaccurate and/or incomplete and may even conflict
with each other, leading to context inconsistency9,10,11. To address context inconsistency, we formulate consistency constraints
to detect errors in the contexts. An example constraint Rexit is as follows:

∀𝑣1 ∈ Cout
((
∃𝑣2 ∈ CrampA

(
sameCar

(
𝑣1, 𝑣2

)))
𝗂𝗆𝗉𝗅𝗂𝖾𝗌

(
𝗇𝗈𝗍

(
∃𝑣3 ∈ CrampB

(
sameCar

(
𝑣1, 𝑣3

))))) (Rexit)

As illustrated in Fig. 1, the constraint requires a vehicle at Gantry “out” to enter the highway either from Gantry “rampA” or
“rampB,” but not both. Any counter-example (the red car in Fig. 1) is impossible and should be considered as a sensor error.
Otherwise, the system may charge a false toll.
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We use first-order logical formulas to specify such consistency constraints, following previous work9,10,11,23,29,25,30,31. Therein,
C is a context, 𝑣𝑖 is a variable that takes an element from C as its value, and the terminal 𝑏𝑓𝑢𝑛𝑐 is an application-specific
predicate that returns a Boolean value (True/T or False/F):

𝑓 ∶∶=∀𝑣 ∈ C(𝑓 ) | ∃𝑣 ∈ C(𝑓 ) | (𝑓 ) 𝖺𝗇𝖽 (𝑓 ) |
(𝑓 ) 𝗈𝗋 (𝑓 ) | (𝑓 ) 𝗂𝗆𝗉𝗅𝗂𝖾𝗌 (𝑓 ) | 𝗇𝗈𝗍 (𝑓 )|
𝑏𝑓𝑢𝑛𝑐

(
𝑣1, 𝑣2,⋯ , 𝑣𝑛

) | T | F.
We can also use a syntax tree to represent a consistency constraint, e.g., Fig. 2 for Rexit.
Constraint checking. Constraint checking examines the contexts given in a context pool against consistency constraints to

report truth values (indicating whether any context inconsistencies happen) and links (indicating how context inconsistencies
happen, if any). Two kernel steps of constraint checking, truth value evaluation and link generation, compute these results
respectively. We introduce them below.

2.2 Constraint Checking
Consider the previous consistency constraint Rexit. Let 𝐶out = {car1, car2}, 𝐶rampA = {car1}, and 𝐶rampB = {car1, car2}.
These contexts return a False truth value for Rexit, indicating that a context inconsistency happens. They also give a link of⟨violated, {𝑣1 = car1, 𝑣2 = car1, 𝑣3 = car1}⟩, which means that the element car1 in contexts 𝐶out, 𝐶rampA, and 𝐶rampB causes the
violation (and other elements are innocent).

For ease of presentation, let 𝑓𝐴 = ∃𝑣2 ∈ CrampA
(
sameCar

(
𝑣1, 𝑣2

))
and 𝑓𝐵 = ∃𝑣3 ∈ CrampB

(
sameCar

(
𝑣1, 𝑣3

))
, and the

previous constraint becomes Rexit = ∀𝑣1 ∈ Cout
((
𝑓𝐴

)
𝗂𝗆𝗉𝗅𝗂𝖾𝗌

(
𝗇𝗈𝗍

(
𝑓𝐵

)))
.

Gantry 
“out”

Gantry 
“rampA”

Gantry 
“rampB”

Wrongly sensing 
car1 by rampB

car1’s true trajectory
car2’s true trajectory

car1

car2

Figure 1 Illustration of a highway scenario

∀𝑣𝑣1 ∈ Cout

implies

∃𝑣𝑣2∈ CrampA not

sameCar(𝑣𝑣1,𝑣𝑣2 )

sameCar(𝑣𝑣1,𝑣𝑣3 )

∃𝑣𝑣3∈ CrampB

Figure 2 Syntax tree structure of constraint Rexit
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2.2.1 Truth Value Evaluation
The truth value of a constraint is evaluated according to the semantics listed in Fig. 3. [𝑓 ]𝛼 denotes the truth value of formula
𝑓 under the variable assignment 𝛼. The semantics leverages a recursive definition.

To evaluate Rexit, we first enumerate all possible assignments to 𝑣1 in the top universal formula to instantiate its subformula
(the 𝗂𝗆𝗉𝗅𝗂𝖾𝗌 formula):

 [
∀𝑣1 ∈ Cout

((
𝑓𝐴

)
𝗂𝗆𝗉𝗅𝗂𝖾𝗌

(
𝗇𝗈𝗍

(
𝑓𝐵

)))]
∅

=T ∧  [(
𝑓𝐴

)
𝗂𝗆𝗉𝗅𝗂𝖾𝗌

(
𝗇𝗈𝗍

(
𝑓𝐵

))]⟨𝑣1∶=car1⟩
∧  [(

𝑓𝐴
)
𝗂𝗆𝗉𝗅𝗂𝖾𝗌

(
𝗇𝗈𝗍

(
𝑓𝐵

))]⟨𝑣1∶=car2⟩ .

Take the situation where 𝑣1 ∶= car1 as an example:

 [(
𝑓𝐴

)
𝗂𝗆𝗉𝗅𝗂𝖾𝗌

(
𝗇𝗈𝗍

(
𝑓𝐵

))]⟨𝑣1∶=car1⟩
=¬ [(

𝑓𝐴
)]⟨𝑣1∶=car1⟩ ∨  [(

𝗇𝗈𝗍
(
𝑓𝐵

))]⟨𝑣1∶=car1⟩
=¬ [(

𝑓𝐴
)]⟨𝑣1∶=car1⟩ ∨ ¬ [(

𝑓𝐵
)]⟨𝑣1∶=car1⟩ .

𝑓𝐴 and 𝑓𝐵 are similarly evaluated according to the semantics in Fig. 3:

 [(
𝑓𝐴

)]⟨𝑣1∶=car1⟩
= [

∃𝑣2 ∈ CrampA
(
sameCar

(
𝑣1, 𝑣2

))]⟨𝑣1∶=car1⟩
=F ∨  [

sameCar
(
𝑣1, 𝑣2

)]⟨𝑣1∶=car1,𝑣2∶=car1⟩ = T,

 [(
𝑓𝐵

)]⟨𝑣1∶=car1⟩
= [

∃𝑣3 ∈ CrampB
(
sameCar

(
𝑣1, 𝑣3

))]⟨𝑣1∶=car1⟩
=F ∨  [

sameCar
(
𝑣1, 𝑣3

)]⟨𝑣1∶=car1,𝑣3∶=car1⟩
∨  [

sameCar
(
𝑣1, 𝑣3

)]⟨𝑣1∶=car1,𝑣3∶=car2⟩
=F ∨ T ∨ F = T.

Thus, we obtain  [(
𝑓𝐴

)
𝗂𝗆𝗉𝗅𝗂𝖾𝗌

(
𝗇𝗈𝗍

(
𝑓𝐵

))]⟨𝑣1∶=car1⟩ = F. Similarly, we get  [(
𝑓𝐴

)
𝗂𝗆𝗉𝗅𝗂𝖾𝗌

(
𝗇𝗈𝗍

(
𝑓𝐵

))]⟨𝑣1∶=car2⟩ = T. Then,
we get the whole constraint’s truth value:

 [
∀𝑣1 ∈ Cout

((
𝑓𝐴

)
𝗂𝗆𝗉𝗅𝗂𝖾𝗌

(
𝗇𝗈𝗍

(
𝑓𝐵

)))]
= T ∧ F ∧ T = F.

We explain the above calculation in a top-down manner for human readability. However, in the actual system, it is conducted
in a bottom-up manner by a post-order traversal: a node is evaluated after that all its children have been evaluated. Expanding
the constraint’s syntax tree respecting all possible variable assignments provides a better illustration for the process, as shown
in Fig. 4. The expanded tree is named consistency computation tree (CCT) as in previous work10,11,23,29,25,24,31. Truth values for
each node are annotated beside them in the figure. During constraint checking, a post-order traversal 4→3→7→8→6→5→2→...
evaluates these truth values in sequence until the final result (False at the root node numbered 1).

2.2.2 Link Generation
Given these truth values, we can generate links to explain why a formula is violated (when its node has an False truth value) or
satisfied (when its node has a True truth value).

Link generation also follows a post-order traversal on CCT according to the semantics in Fig. 5. For the example in Fig. 4, all
links generated during the process are annotated beside each node.

In Fig. 5, [𝑓 ]𝛼 denotes the generated links for formula 𝑓 under the variable assignment 𝛼, and there are some auxiliary
functions and operators. 𝖥𝗅𝗂𝗉𝖲𝖾𝗍 is used to flip the 𝗏𝗂𝗈𝗅𝖺𝗍𝖾𝖽/𝗌𝖺𝗍𝗂𝗌𝗂𝖿𝖾𝖽 tag for all links in a given set (from 𝗏𝗂𝗈𝗅𝖺𝗍𝖾𝖽 to 𝗌𝖺𝗍𝗂𝗌𝖿 𝗂𝖾𝖽, or
vice versa), and ⊗ is the Cartesian product used to merge two link set. For example, the Cartesian product for two link sets 𝑆1
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 [∀𝑣 ∈ C(𝑓 )]𝛼 = T ∧

(⋀
e∈C

 [𝑓 ]𝛼[𝑣∶=e]

)

 [∃𝑣 ∈ C(𝑓 )]𝛼 = F ∨

(⋁
e∈C

 [𝑓 ]𝛼[𝑣∶=e]

)
 [(

𝑓1
)
𝗂𝗆𝗉𝗅𝗂𝖾𝗌

(
𝑓2
)]

𝛼 = ¬ [
𝑓1
]
𝛼 ∨  [

𝑓2
]
𝛼 [(

𝑓1
)
𝖺𝗇𝖽

(
𝑓2
)]

𝛼 =  [
𝑓1
]
𝛼 ∧  [

𝑓2
]
𝛼 [(

𝑓1
)
𝗈𝗋

(
𝑓2
)]

𝛼 =  [
𝑓1
]
𝛼 ∨  [

𝑓2
]
𝛼 [𝗇𝗈𝗍 (𝑓 )]𝛼 = ¬ [𝑓 ]𝛼

 [
𝑏𝑓𝑢𝑛𝑐(𝑣1,… , 𝑣𝑛)

]
𝛼 = 𝑏𝑓𝑢𝑛𝑐(𝑣1,… , 𝑣𝑛)𝛼

Figure 3 Truth value evaluation semantics

Figure 4 CCT for the example constraint with S-CCT shadowed

and 𝑆2 are:
𝑆1 ⊗𝑆2 =

{
𝑙1 ⋅ 𝑙2||𝑙1 ∈ 𝑆1, 𝑙2 ∈ 𝑆2

}
.

where 𝑙1 ⋅ 𝑙2 = ⟨𝑇 𝑎𝑔(𝑙1), 𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑠(𝑙1) ∪ 𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑠(𝑙2)⟩, with 𝑇 𝑎𝑔(𝑙) referring to 𝑙’s 𝗏𝗂𝗈𝗅𝖺𝗍𝖾𝖽/𝗌𝖺𝗍𝗂𝗌𝗂𝖿 𝗂𝖾𝖽 tag, and 𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑠(𝑙)
referring to 𝑙’s assignment pairs. Note that we use {⟨𝗏𝗂𝗈∕𝗌𝖺𝗍,∅⟩} to denote a link set with only a violated/satisfied tag and no
assignment pair (no variable bound to any specific value). It is treated as ∅ when computing unions and Cartesian products.

The final result of the link generation process is the link ⟨violated, {𝑣1 = car1, 𝑣2 = car1, 𝑣3 = car1}⟩ at the root node
numbered 1. The link’s interpretation contains two parts: 1) the 𝗏𝗂𝗈𝗅𝖺𝗍𝖾𝖽 tag indicates that the constraint is violated, i.e., a context
inconsistency happens, and 2) the assignment pairs {𝑣1 = car1, 𝑣2 = car1, 𝑣3 = car1} means that assigning car1 to 𝑣1, 𝑣2, 𝑣3
causes this inconsistency.

We observe that to calculate the final link at Node 1 in Fig. 4, all nodes of the tree participated in the computation and
generated their links. Comparing the semantics in Fig. 3 and Fig. 5, link generation is much more complicated than truth value
evaluation. However, many nodes generate unnecessary links. For the example in Fig. 3.1, the final link at Node 1 only depends
on links at Node 2–7, and links at Node 8–15 do not affect it at all. The redundancy rate (53.3%) is rather high!

3 MINIMIZED LINK GENERATION

In this section, we report a pilot study to motivate our work and elaborate on our MG technique that eliminates redundancy in
link generation to boost the efficiency of constraint checking.

3.1 Motivation and Pilot Study
We conduct a pilot study to investigate the severity of the redundancy problem. We conduct the study in an exhaustive manner
by enumerating all possible consistency constraints constructed from different types of formulas. We limit the heights of these
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 [∀𝑣 ∈ C(𝑓 )]𝛼 = {⟨𝗏𝗂𝗈𝗅𝖺𝗍𝖾𝖽, {𝑣 ∶= e}⟩}⊗ {[𝑓 ]𝛼[𝑣∶=e]||e ∈ C ∧  [𝑓 ]𝛼[𝑣∶=e] = F
}

 [∃𝑣 ∈ C(𝑓 )]𝛼 = {⟨𝗌𝖺𝗍𝗂𝗌𝖿 𝗂𝖾𝖽, {𝑣 ∶= e}⟩}⊗ {[𝑓 ]𝛼[𝑣∶=e]||e ∈ C ∧  [𝑓 ]𝛼[𝑣∶=e] = T
}

 [(
𝑓1
)
𝗂𝗆𝗉𝗅𝗂𝖾𝗌

(
𝑓2
)]

𝛼 =
(1) 𝖥𝗅𝗂𝗉𝖲𝖾𝗍

( [
𝑓1
]
𝛼

)
⊗  [

𝑓2
]
𝛼 , if  [

𝑓1
]
𝛼 = T and  [

𝑓2
]
𝛼 = F

(2) 𝖥𝗅𝗂𝗉𝖲𝖾𝗍
( [

𝑓1
]
𝛼

)
∪  [

𝑓2
]
𝛼 , if  [

𝑓1
]
𝛼 = F and  [

𝑓2
]
𝛼 = T

(3)  [
𝑓2
]
𝛼 , if  [

𝑓1
]
𝛼 =  [

𝑓2
]
𝛼 = T

(4) 𝖥𝗅𝗂𝗉𝖲𝖾𝗍
( [

𝑓1
]
𝛼

)
, if  [

𝑓1
]
𝛼 =  [

𝑓2
]
𝛼 = F

 [(
𝑓1
)
𝖺𝗇𝖽

(
𝑓2
)]

𝛼 =
(1)  [

𝑓1
]
𝛼 ⊗  [

𝑓2
]
𝛼 , if  [

𝑓1
]
𝛼 =  [

𝑓2
]
𝛼 = T

(2)  [
𝑓1
]
𝛼 ∪  [

𝑓2
]
𝛼 , if  [

𝑓1
]
𝛼 =  [

𝑓2
]
𝛼 = F

(3)  [
𝑓2
]
𝛼 , if  [

𝑓1
]
𝛼 = T and  [

𝑓2
]
𝛼 = F

(4)  [
𝑓1
]
𝛼 , if  [

𝑓1
]
𝛼 = T and  [

𝑓2
]
𝛼 = T

 [(
𝑓1
)
𝗈𝗋

(
𝑓2
)]

𝛼 =
(1)  [

𝑓1
]
𝛼 ⊗  [

𝑓2
]
𝛼 , if  [

𝑓1
]
𝛼 =  [

𝑓2
]
𝛼 = F

(2)  [
𝑓1
]
𝛼 ∪  [

𝑓2
]
𝛼 , if  [

𝑓1
]
𝛼 =  [

𝑓2
]
𝛼 = T

(3)  [
𝑓1
]
𝛼 , if  [

𝑓1
]
𝛼 = T and  [

𝑓2
]
𝛼 = F

(4)  [
𝑓2
]
𝛼 , if  [

𝑓1
]
𝛼 = T and  [

𝑓2
]
𝛼 = T

 [𝗇𝗈𝗍 (𝑓 )]𝛼 = 𝖥𝗅𝗂𝗉𝖲𝖾𝗍
([𝑓 ]𝛼)

 [
𝑏𝑓𝑢𝑛𝑐(𝑣1,… , 𝑣𝑛)

]
𝛼 =

(1) {⟨𝗌𝖺𝗍𝗂𝗌𝖿 𝗂𝖾𝖽,∅⟩}, if  [
𝑏𝑓𝑢𝑛𝑐(𝑣1,… , 𝑣𝑛)

]
𝛼 = T

(2) {⟨𝗏𝗂𝗈𝗅𝖺𝗍𝖾𝖽,∅⟩}, if  [
𝑏𝑓𝑢𝑛𝑐(𝑣1,… , 𝑣𝑛)

]
𝛼 = F

Figure 5 Link generation semantics

constraints to no more than 4 to ensure an acceptable computation cost. A total of 1,658 constraints are left after this filtering
process. During checking, 𝑏𝑓𝑢𝑛𝑐 terminals return random truth values to simulate overall situations respecting the value of
a 𝑏𝑓𝑢𝑛𝑐 in different contexts. By measurement, we observe that all existing constraint checking techniques with complete
link generation (aforementioned CG) suffer from severe link redundancy problems: 88% constraints waste over 50% links, and
73% constraints waste over 75% links. Such terrible statistics strongly call for a new technique to reduce or eliminate these
unnecessarily generated links.

Only one piece of previous work centers its effort on this problem. For consistency, we rename it Optimized Link Generation
(OG), following the original name Optimized Constraint Checking (OCC)29. However, its “optimization” is far from enough.
The core step of OG lies in a static analysis that conservatively considers redundancy that may happen on different types of
formulas. Such consideration deviates a lot from the reality. First, the article itself reports an average link redundancy rate of
16.7% respecting and/or/implies formulas based on theoretical deduction29. Second, in actual constraint checking scenarios,
the leftovers that cannot be optimized by OG are even worse. For example, OG is absolutely ineffective for the constraint in
Fig. 4 (reducing no redundancy). When being applied to the 1,658 constraints in our pilot study, OG slightly improves the
performance, but the remaining redundancy is still severe: 80% constraints waste over 50% links (the number is 88% for CG), and
57% constraints waste over 75% links (the number is 73% for CG). These data impose urges for a more effective link generation
technique.

This article will propose a novel technique, Minimized Link Generation (MG), to resolve this problem. MG exploits a key data
structure, the Substantial CCT (S-CCT), that combines static and dynamic information to identify links that will be redundant
and prevent their generation. An S-CCT evolves according to static deduction rules and dynamic runtime truth values and can
separate a CCT into relevant and irrelevant parts, respecting the final result. By restricting link generation to S-CCTs, we can
generate actually necessary links while eliminating all redundancy. When being applied to the illustrative example in Fig. 4,
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Minimized Link Generation Derivation of Substantial Conditions (§3.3)
Consistency 
constraints

Contexts 
(changing)

Detected 
context 

inconsistenciesTruth Value Evaluation Tainting CCT for S-CCT (§3.4) S-CCT-guided Link Gen (§3.5)

Complete Link Generation (CG)
original constraint checking

MG-deployed constraint checking

Figure 6 MG overview

MG constructs an S-CCT with Node 1–7 marked, and they are exactly where necessary links forms. Left Node 8–15 are not on
the S-CCT, and as previously analyzed, links generated on these nodes make no contribution to the final result.

The hybrid static-dynamic S-CCT analysis offers adaptability for MG. It can attain optimal performance under various sit-
uations. We will prove this in Section 3.5. Moreover, S-CCTs bring us an unexpected benefit. Other than the link generation
step, which S-CCTs are designed for, the truth value evaluation can also make use of the information. We will extend our MG
to MG+ to further improve the overall efficiency of constraint checking in Section 4.

3.2 Methodology Overview
We give an overview of how MG works in Fig. 6. The part in the blue box is our MG technique, and the part with dashed lines is
the original CG technique that is replaced by MG. It consists of three steps. First, MG derives substantial conditions respecting
different types of formula. These conditions characterize how a specific type of formula will contribute to the final links during
constraint checking. Second, MG taints a CCT to get an S-CCT. An S-CCT is the subtree of the tainted CCT, which contains all
nodes that will affect the final result during link generation, i.e., with and only with links generated on these S-CCT nodes, we
can compute the correct final link. Finally, MG conducts link generation restricted onto the S-CCT. Due to the aforementioned
S-CCT properties, the process is guaranteed to generate the correct result without any redundancy.

CCT nodes are at different layers. We use 𝑒1 ≻ 𝑒2 to denote that a node 𝑒2 is a direct child of a node 𝑒1, ≻𝑙 and ≻𝑟 to
differentiate left and right children if necessary. Sometimes, it is sufficient for analysis with only the formula type and the truth
value information of a CCT node. If so, we simplify the representation of the node to (𝑓, 𝑡𝑣) where 𝑓 is the formula type
and 𝑡𝑣 is the truth value. For example, Node 1 and Node 2 in Fig. 4 can be simply represented by: node1 = (∀,False) and
node2 = (implies,False), and the relations between them are node1 ≻ node2 or node1 ≻𝑙 node2.

The key of our MG technique is identifying CCT nodes that will actually affect the final result during link generation. These
nodes form the S-CCT. To realize this, we must first derive conditions under which a CCT node should be an S-CCT node.
These conditions are called substantial conditions, and their derivation is elucidated in the next section.

3.3 Derivation of Substantial Conditions
Nodes with different formula types (viz., “∀,” “∃,” “and” “or,” “implies,” and “not”) contribute differently to the constraint
checking results of their parents and the whole CCT.

Take universal (∀) formulas as an example. Fig. 7 shows different cases when checking a universal formula. When the universal
formula has a truth value of False (i.e., violation happens), only child nodes with also a False truth value contribute to the
violation. In this case, child nodes with a False truth value are substantial nodes, and vice versa; substantial nodes must meet
this condition of producing a False truth value. The condition is what we call a substantial condition, written as (∀,False)

𝑆𝐶
←←←←←←←←←←←←→

∀
False

∀
True

∗

True

∗

True

∗

True

∗

True

∗

False

∗

False

Figure 7 Two typical cases of substantial nodes for the ∀ formula
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⌜≻,False⌝. It means that when a node is a universal node with a False truth value (the left-hand side), we select its child nodes
with also False truth values as the substantial nodes (the right-hand side).

Another case happens when the universal node has a True truth value (i.e., the formula is satisfied). In this case, all its child
nodes (which must be with True truth values) together contribute to the result, but no single one can fully decide it. Thus, we
avoid further exploring these nodes, and the corresponding substantial condition is (∀,False)

𝑆𝐶
←←←←←←←←←←←←→ ∅, meaning that no further

analysis on the children.
Derivation of the substantial conditions of existential formulas are similar. They are (∃,True)

𝑆𝐶
←←←←←←←←←←←←→ ⌜≻,True⌝ and

(∃,False)
𝑆𝐶
←←←←←←←←←←←←→ ∅.

Another illustrative example is the “implies” formulas, as shown in Fig. 8. When an “implies” node is with a False truth
value, its left child must be with a True truth value, and its right child must be with a False truth value. They together decide
the truth value of the “implies” node—changing either of them will cause the truth value of the “implies” node an alternation.
In this case, both child nodes are substantial. Otherwise, the root node is with a True truth value. Either the left child is with a
False truth value, or the right child is with a True truth value. As long as either of the two condition holds, the truth value of
the “implies” node stays unchanged, however the truth value of another child alters. Thus, we derive two substantial conditions
(implies, False)

𝑆𝐶
←←←←←←←←←←←←→ ⌜≻, ∗⌝ and (implies, True)

𝑆𝐶
←←←←←←←←←←←←→ ⌜≻𝑙,False⌝, ⌜≻𝑟,True⌝ (“∗” is a wildcard matching any cases).

Derivation of substantial conditions for the “and” and “or” formulas is similar.
Finally, a “not” node has only one child, and its truth value is totally determined by that child, so the child is always a

substantial node, and the corresponding substantial condition is (not, ∗)
𝑆𝐶
←←←←←←←←←←←←→ ⌜≻, ∗⌝.

Fig. 9 lists all derived substantial conditions.

3.4 Tainting CCTs for S-CCTs
We proceed to taint CCTs using substantial conditions derived in Section 3.3. After tainting, we will obtain the S-CCT for a
CCT, i.e., the necessary part of the CCT that actually contributes to the final result of link generation. It can be used to guide
the link generation step to eliminate unnecessary computation (detailed in the next section). We name this process conditional
tainting. It is inserted between the truth value evaluation step and the link generation step, so truth values needed by the analysis
are available, and the obtained S-CCT can later guide link generation.

Conditional tainting aims to taint all nodes of an S-CCT. For any node of the CCT (starting from the root node, in a top-
down manner), we examine its children against substantial conditions. We recursively taint children that satisfy any substantial

implies

False

∗

True

∗

False

implies

True

∗

−

∗

True

implies

True

∗

False

∗

−

Figure 8 Three typical cases of substantial nodes for the implies formula

(∀, True)
𝑆𝐶
←←←←←←←←←←←←→ ∅, (∀, False)

𝑆𝐶
←←←←←←←←←←←←→ ⌜≻,False⌝;

(∃, True)
𝑆𝐶
←←←←←←←←←←←←→ ⌜≻,True⌝, (∃, False)

𝑆𝐶
←←←←←←←←←←←←→ ∅;

(and, True)
𝑆𝐶
←←←←←←←←←←←←→ ⌜≻, ∗⌝, (and, False)

𝑆𝐶
←←←←←←←←←←←←→ ⌜≻,False⌝;

(or, True)
𝑆𝐶
←←←←←←←←←←←←→ ⌜≻,True⌝, (or, False)

𝑆𝐶
←←←←←←←←←←←←→ ⌜≻, ∗⌝;

(implies, True)
𝑆𝐶
←←←←←←←←←←←←→ ⌜≻𝑙,False⌝, ⌜≻𝑟,True⌝,

(implies, False)
𝑆𝐶
←←←←←←←←←←←←→ ⌜≻, ∗⌝;

(not, ∗)
𝑆𝐶
←←←←←←←←←←←←→ ⌜≻, ∗⌝.

Figure 9 Deriving substantial conditions
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condition and skip the analysis on other children. Besides, if a node is skipped, all its descendants will be skipped, too. Tainted
nodes will eventually form a sub-tree of the original CCT, namely, the S-CCT.

Algorithm 1 Conditional Tainting
1: procedure GETSCCT(cct)
2: if ISROOTVIOLATED(cct.root) then
3: return TAINT(cct.root)
4: end if
5: end procedure
6: procedure TAINT(currentNode)
7: ccts ← {currentNode}
8: for c ∈ currentNode.children do
9: if SATISFY(currentNode, c) then

10: subResult ← TAINT(c)
11: ccts ← ccts ∪ subResult
12: end if
13: end for
14: return ccts
15: end procedure

Alg. 1 conducts the tainting process by depth-first search. It (GETSCCT) starts from the root node if a violation happens
(Line 2–4) and then advances by feeding each node to the tainting logic (Line 10). The tainting logic (TAINT) checks whether
any child of a node satisfies one of the substantial conditions and further explores that child if so. Otherwise, the child and its
descendants are skipped. We visualize the algorithm on the CCT in Fig. 4. It starts from Node 1 (∀,False) whose substantial
condition is ⌜≻,False⌝. Only children with a False truth value (Node 2) meet the condition. After tainting Node 2, the algorithm
further examines its children, Node 3 and Node 5. The substantial condition of Node 2 is ⌜≻, ∗⌝. Both Node 3 and Node 5 meet
it. Similarly, Node 4, 6, and 7 are tainted, and then the algorithm terminates. Eventually, we get an S-CCT of seven nodes (Node
1–7), illustrated by the shadowed sub-tree in Fig. 4.

3.5 S-CCT-guided Link Generation
We can now use the S-CCT to guide our link generation to avoid link redundancy. This process is straightforward. For any node
on a CCT, if it is tainted (i.e., on the S-CCT), we generate links as usual, using the semantics listed in Fig. 5. Otherwise, we
simply skip it. We theoretically guarantee (detailed later) that nothing abnormal will happen for the final result. The final links
will keep their correctness as before. In summary, the S-CCT-guided link generation can be regarded as if we restrict the original
link generation process from the whole CCT onto the S-CCT.

The S-CCT would be updated as the CCT evolves, and the updating is as efficient as Alg. 1.
Fig. 10 gives an illustration of how MG differs from existing link generation techniques (CG and OG). In the figure, all-links

refer to the links generated by CG (all links in Fig. 4). They can be divided into two parts: must-links and may-links. Must-links
refer to the links that must be generated insofar as we want to compute a correct final result, and may-links refer to the remaining

All-links
May-links

Must-links
MG

CG
OG

Figure 10 Relations among different types of links (all-links = must-links + may-links)
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links. The absence of may-links will not have any effect on the final result, i.e., they are redundant. In the comparison, CG
generates all-links, including all must-links and may-links; OG reduces part of may-links by its static analysis but still leaves
much redundancy, i.e., it generates all must-links and many (though not all) may-links. MG instead eliminates all may-links and
generates only must-links. Such property of our MG technique is guaranteed by two following theorems, viz., the soundness
theorem (for correctness) and the completeness theorem (for minimization).

In the comparison, CG generates all-links, including all must-links and may-links; OG reduces part of may-links by its static
redundancy analysis, but still leaves some redundancy, i.e., including all must-links and some may-links. Our MG instead elim-
inates all may-links, thus including only all must-links. This is guaranteed by the following two theorems, namely, soundness
(for correctness) and completeness (for minimization) theorems.

Theorem 1 (Soundness). MG generates all must-links.

Theorem 2 (Completeness). MG generates no may-links.

Sketch of proof: We prove Theorem 1 and Theorem 2 together. To save space, we give a sketch of the proof, which is briefly
a proof by induction. The intuition is to show that MG will taint and only taint nodes that generate necessary links for the final
result. For any such node, MG will similarly taint and only taint its children, which generate necessary links for the middle result
on that node. The two propositions form an inductive relation that applies to all tainted nodes to guarantee that they will only
generate necessary links for the final result.

Base step. Consider the root node. According to Alg. 1, MG taints it only if a violation happens. In this case, links generated
by the root node must be taken as the final result. They are naturally must-links.

Inductive step. Consider a given node 𝑚 that generates must links. We examine its children. We only discuss the cases where
𝑚 is a ∀ or “implies” node. Other cases are similar.

1. When 𝑚 is a ∀ node, according to the substantial conditions in Fig. 9, if 𝑚’s truth value is False, MG will only taint
children with a False truth value according to (∀,False)

𝑆𝐶
←←←←←←←←←←←←→ ⌜≻,False⌝. This essentially corresponds to the link generation

semantics for ∀ formulas in Fig. 5,  [∀𝑣 ∈ C(𝑓 )]𝛼 = {⟨𝗏𝗂𝗈, {𝑣 ∶= e}⟩}⊗[𝑓 ]𝛼[𝑣∶=e]|e ∈ C∧ [𝑓 ]𝛼[𝑣∶=e] = F. MG taints
right those children that generate must-links

2. When 𝑚 is an “implies” node, we delve into its link generation semantics in Fig. 5. There are four cases. We observe that
if 𝑚’s truth value is False, its left child must be True, and the right child must be False (Case 1). Links of both children
(i.e.,  [

𝑓1
]
𝛼 and  [

𝑓2
]
𝛼) are necessary. In this case, MG correctly taints these two nodes (the penultimate row in Fig. 9).

In the remaining cases, 𝑚’s truth value is True. It depends on 𝑚’s left child node if the node is with a False truth value
(Case 2 and Case 4, and on 𝑚’s right child node if the node is with a True truth value (Case 2 and Case 3). This again
exactly corresponds to MG’s substantial conditions ( the third-to-last row in Fig. 9). MG taints right those children that
generate must-links.

Combining the base step and the inductive step, we prove that MG generates all must-links with no may-link. □

3.6 Applying MG to Constraint Checking
MG minimizes the generated links during constraint checking. The improvement is generic and can be easily applied to exist-
ing constraint checking techniques, e.g., ECC (entire checking)11, PCC (partial checking)11, and Con-C (parallel checking)23.
Hereafter, we apply a name convention that refers to different constraint checking techniques with different link generation tech-
niques by their combination, e.g., ECC-CG for ECC equipped with CG (the original ECC), and ConC-MG for Con-C equipped
with MG (MG replacing the original CG step in Con-C).

Applying MG to ECC and Con-C. This is straightforward. ECC and Con-C use an unmodified version of CG semantics
listed in Fig. 5. MG can be directly applied by replacing the CG step with substantial derivation, conditional tainting, and
S-CCT-guided link generation.

Applying MG to PCC. This use case deserves some discussion. PCC differs from ECC and Con-C in that it reuses previously
calculated links instead of always regenerating them as in ECC and Con-C. Thus, it introduces a slight complexity. In each
constraint checking turn, PCC does not destroy the CCTs inherited from previous turns but partially updates them. As a result,
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Figure 11 The modified sub-tree rooted for node 9 from Fig. 4

we have to consider two cases when applying MG to PCC: (1) for the updated part of a CCT, MG only generates links for tainted
nodes; (2) for the reused part that is not updated, MG checks whether links on them are readily usable (not readily usable if the
concerned nodes are not tainted in the last turn)—if so, it will reuse these links, and otherwise, it will regenerate links for those
tainted nodes in the reused part. In other words, MG still generates must-links but additionally takes care of the reusing and
deferred generation issues specific to PCC.

4 REDUCED TRUTH VALUE EVALUATION BY S-CCTS

In this section, we exploit S-CCTs to improve the efficiency of truth value evaluation, another core step of constraint checking.
It is an unexpected benefit that shows the potential of our S-CCT analysis. We use a motivating example to illustrate this opti-
mization, followed by detailed explanations. MG equipped with this extra optimization constitutes MG+, a technique extended
over MG that can further boost the efficiency of constraint checking.

4.1 Motivating Example
An S-CCT taints all substantial parts contributing to the final constraint checking result. Besides link generation, truth value
evaluation can also leverage such “necessary-versus-unnecessary” information to reduce redundancy. The key insight is that if
a truth value is neither used by the current final result nor by any links generated later, it does not need to be evaluated.

Recall our example in Fig. 4 and focus on the right sub-tree rooted at Node 9 in Fig. 11. In our MG technique, the whole sub-
tree is not tainted (i.e., not part of the S-CCT), so no link on it will be generated. Moreover, “not tainted” means that the sub-tree
does not affect the final constraint checking result, including the truth value and the link on Node 1, so if later the sub-tree keeps
this property, we can safely escape the evaluation of truth values on it too.

For example, suppose we add a new element 𝖼𝖺𝗋3 to CrampB, changing the sub-tree to sprout a new branch (the shadowed
branch in Fig. 11). According to the truth value evaluation semantics of the existential formula (see Fig. 3), such a change will
never alter the truth value of Node 13 and thus will keep the truth value of Node 9 unchanged. In this case, according to Alg. 1,
the whole sub-tree stays untainted, meaning that there is still no node on the S-CCT. As a result, neither do links on the sub-tree
require the truth values (MG avoids generating these links at all), nor do the final result require them (the truth value of Node
9 stays unchanged and thus “blocks” the influence of the newly added branch to the truth value in the final result). This means
that skipping the evaluation of truth value on the sub-tree causes no harm. It shows that, though the original goal of S-CCT is
to minimize link generation, it can simultaneously optimize another core step of constraint checking, too!

The insight extracted from the motivating example is that as long as sub-trees rooted at nodes like Node 9 (anchor nodes,
explained later) stay untainted after a context change, we can safely escape all truth value evaluation on it.

We briefly introduce such reduction in the next section.
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4.2 Methodology Overview
Fig. 12 gives an overview of how MG+ works. It consists of three steps. First, MG+ catches all anchor nodes on the current
CCT after a constraint checking turn according to the S-CCT. Anchor nodes are untainted nodes adjacent to the S-CCT, e.g.,
Node 8 and Node 9 in Fig. 4. Anchor nodes will be further examined by MG+ to find chances to escape the truth value evaluation
on sub-trees rooted at them in the next checking turn. Second, based on the truth value of each anchor node, we derive escape
conditions for them. An escape condition matches changes that keep the anchor node untainted. Also, it ensures the truth value
of the anchor node is unchanging. Third, MG+ reduces the truth value evaluation by escape evaluating sub-trees rooted at anchor
nodes whose escape conditions match the upcoming change. We will elaborate on these steps next.

4.3 Catching Anchor Nodes
Anchor nodes are untainted nodes adjacent to the S-CCT. For example, considering the S-CCT in Fig. 4, Node 8 and Node 9
are anchor nodes. The parent node of an anchor node is exactly on the S-CCT. Recall the substantial conditions in Fig. 9. It is
trivial that an anchor node cannot have a “not” parent since if a “not” node is tainted, its child must also be tainted (the last line
in Fig. 9). Therefore, an anchor node must satisfy one of the following two cases:

• The anchor node is a child of a ∀ or ∃ node. In this case, the truth value of the anchor node must be True for the ∀ case or
False for the ∃ case according to the substantial conditions. It is because the children of a ∀ node with a False truth values
are always tainted if the ∀ node is on the S-CCT and thus cannot be anchor nodes. As long as the anchor node maintains
the unchanged truth value, it stays untainted in the next checking turn. We can thus safely skip the sub-tree rooted at it in
truth value evaluation.

• The anchor node is a child of an “𝐚𝐧𝐝,” “𝐨𝐫” or “𝐢𝐦𝐩𝐥𝐢𝐞𝐬” node. In this case, whatever the truth value of the parent
node is, if both children of the parent node maintain unchanged truth values in the next checking turn, the anchor node
stays untainted. This is because, currently, the anchor node is left out of the tainting process due to its breach of substantial
conditions. This is caused by the truth values of the anchor node and its parent. In the next checking turn, since both the
anchor node and the parent maintain unchanged truth values (unchanged truth values of the children lead to an unchanged
truth value of the parent), they will keep the breach in the next checking turn, and the anchor node as a result stays untainted.

In practice, we can easily catch anchor nodes by recording boundary nodes of an S-CCT during MG’s analyses. Our goal is to
escape unnecessary truth value evaluation that can be safely skipped. This should hold when an upcoming context change meets
one of the above conditions. In this situation, we only need to cache the truth value of the anchor node. The number of anchor
nodes is typically small since S-CCTs typically occupy a small part on the original CCT. Thus, the overhead is negligible. The
correctness of escaping such evaluation is guaranteed by the following theorem.

Theorem 3. Any anchor node with a ∀ or ∃ parent stays untainted upon an upcoming context change if it maintains an unchanged
truth value; any anchor node with an “and” or “or” or “implies” parent stays untainted upon an upcoming context change if it
and its sibling maintain unchanged truth values.

Sketch of proof: The proof formally echoes our previous intuitive explanation. Suppose we have an anchor node 𝑛 whose
parent is 𝑝. We have to prove the theorem respecting two cases.

𝒑 is a ∀ node. According to the substantial conditions (Fig. 9) and tainting algorithm (Alg. 1), the only possible truth value of
𝑝 is True and the only possible truth value of 𝑛 is False since 𝑝 is on the S-CCT but 𝑛 is not (Line 1 in Fig. 9). Consider

Minimized Link Generation
(§3)

Consistency 
constraints

Contexts 
(changing)

Detected 
context 

inconsistencies
Catching Anchor Nodes (§4.3)

Constraint checking by MG+

Reduced Truth Value 
Evaluation (§4.5)

Reduced Truth Value Evaluation
Derivation of Escape Conditions (§4.4)
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any upcoming context change. The change may alter some truth values on the CCT, which may or may not keep 𝑝 tainted.
If 𝑝 becomes untainted, it is naturally excluded from the S-CCT. Otherwise, there are four possible cases on how p’s truth
value changes: (1) staying True, (2) from True to False, (3) from False to True, and (4) staying False. In all four cases,
according to the substantial conditions respecting ∀ formulas, viz., (∀, True)

𝑆𝐶
←←←←←←←←←←←←→ ∅ and (∀, False

𝑆𝐶
←←←←←←←←←←←←→ ⌜≻,False⌝, 𝑛 always

stays untainted if its truth value stays to be True (so that it can never meet the substantial conditions). The proof when 𝑝
is an ∃ node is similar.

𝒑 is an “𝐚𝐧𝐝” node. According to the substantial conditions (Fig. 9) and tainting algorithm (Alg. 1), the only possible truth
value of 𝑛 is True and the only possible truth value of 𝑛’s sibling is False. They together result in a False truth value of 𝑝.
After the context change, we request that the truth values of 𝑛 and 𝑛’s sibling both stay unchanged. Again, 𝑝 may or may
not stay untainted, and if it becomes tainted, 𝑛 is naturally excluded from the S-CCT. Otherwise, since the truth values of
𝑝, 𝑛, and 𝑛’s sibling stay to be False, True, and False, n stays untainted. The proof when 𝑝 is an “or” or “implies” node is
similar.

Combining all these cases, we conclude our proof. □

4.4 Derivation of Escape Conditions
In this step, we propose a lightweight method to examine whether a context change would alter the truth values of an anchor node
and (if necessary) its siblings. With this method, we can quickly decide whether a context change would require a re-evaluation
of a sub-tree rooted at any anchor node. If not, the sub-tree can be safely escaped from the truth value evaluation step (detailed
in the next section).

Escape conditions for an anchor node are patterns that match changes that keep the anchor node untainted. If a change meets
any escape condition, we can escape re-evaluation of truth values on the sub-tree rooted in it. As discussed before, escape
conditions of anchor nodes with ∀ or ∃ parents only need to keep the truth value of the anchor node itself unchanged and escape
conditions of anchor nodes with “and,” “or,” or “implies” parents should keep the truth value of its sibling unchanged too.

We derive escape conditions following a two-step analysis.
In the first step, we statically analyze which context changes can keep the current truth value of an anchor node. This is

possible because the analysis only depends on the static formula structure of the sub-tree rooted at that anchor node. Take a
simple constraint ∀𝑣 ∈ C (𝑏𝑓𝑢𝑛𝑐) as an example. After adding an element to C, the only possible change of the truth value is
from True to False, and if the current truth value is already False, it stays unchanged. Similarly, after deleting an element from C,
the only possible change of the truth value is from False to True, and if the current truth value is already True, it stays unchanged.
Thus, we can obtain two sets, EConditionF and EConditionT, for it, where EConditionF matches context changes that keep the
current truth value unchanged if it is already False, and EConditionT matches the opposite. The value of EConditionF in this
example is {⟨+,C} and the value of EConditionT is {⟨−,C}. For more complex formulas, we can similarly obtain these two sets
recursively, following derivation rules in Fig. 13.

In the second step, we synthesize complete escape conditions from EConditionsT and EConditionsF, following derivation
rules in Fig. 14. Specifically, if the current truth value of an anchor node is True, we choose EConditionsT to keep that truth
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Figure 13 Derivation rules for partial escape condition sets of different formulas
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Figure 14 Derivation rules for escape conditions of different anchor nodes

value unchanged, and vice versa. Moreover, for anchor nodes with an “and,” “or” or “implies” parent, we should also consider
its sibling. For example, if the truth value of an anchor node 𝑛 is True, we should include (1) escape conditions that keep this
truth value unchanged (EConditionsT of 𝑛), and (2) escape conditions that keep the truth value of 𝑛’s sibling (which must be
False) unchanged (EConditionsF of 𝑛’s sibling). We use the union instead of the intersection because one change may only affect
one sub-formula. If it affects the sub-formula of 𝑛, it will not affect the sub-formula of 𝑛’s sibling, leaving all truth values on that
sub-tree rooted unchanged. Thus, if the change affects 𝑛 and meets one of 𝑛’s escape conditions, it implicitly meets the escape
conditions of 𝑛’s sibling too.

Note that since the first step is static, we can perform it in advance, completely avoiding runtime overheads. Besides, the
second step consists of simple assigning and set operations, which are quite efficient.

Theorem 4 proves the correctness of derived escape conditions.

Theorem 4. Context changes satisfying one of the escape conditions of an anchor node will keep the truth value of that anchor
node unchanged, and if the anchor node has an “and,” “or,” or “implies” parent, it will keep the truth value of the anchor node’s
sibling unchanged too.

Sketch of proof: Consider an anchor node 𝑚. It corresponds to the formula 𝑓 . The upcoming context change directly modifies
a context in the sub-tree rooted at 𝑚. Suppose the context is associated with a universal or existential node 𝑛. We first prove that
if 𝑚’s current truth value is True and chg conforms to  ′

T [𝑓 ], the truth value will stay to be True. Similarly, if 𝑚’s old truth
value is False and chg conforms to  ′

F [𝑓 ], the truth value will stay to be False. We achieve this by induction over the length 𝑑
of the path from 𝑚 to n.

Base case Let 𝑑 be 0. It indicates that 𝑚 and 𝑛 are the same node. In this case, 𝑚 itself is a ‘∀‘ or “∃” node directly affected
by this change. Suppose that 𝑓 is ∀𝑣 ∈ C

(
𝑓 ′). When 𝑚’s current truth value is True, according to the derivation rules

of escape conditions (Fig. 13 and Fig. 14), the context change must be a deletion change to C (otherwise it cannot meet
these escape conditions). Since 𝑚’s truth value is True, all its children must be with True truth values. After deleting one
of its children, the remaining children are still with True truth values. This keeps 𝑚’s True truth value. If there is no child
left, 𝑚’s default truth value is also True. When 𝑚’s old truth value is False, according to the derivation rules of escape
conditions (Fig. 13 and Fig. 14) the context change must be an addition change to C. Also, there should be a child of 𝑚
with a False truth value, and the addition change will not affect that child. Thus, 𝑚 keeps its False truth value. The analysis
is similar when 𝑚 is an ∃ node.

Inductive step Let 𝑑 be a number ℎ greater than 0. Assume that when 𝑑 is ℎ − 1, this property holds. Let 𝑝 be 𝑚’s child node
on the path from 𝑚 to n. There are ℎ − 1 nodes on the path from 𝑝 to n. We discuss different situations respecting m’s
formula type. For conciseness, only discuss cases for “and,” “not,” and ∀ formulas.

𝒎 is an “𝐚𝐧𝐝” node Let 𝑓 be
(
𝑓1
)
𝖺𝗇𝖽

(
𝑓2
)

and 𝑝 corresponds to 𝑓1. When 𝑚’s current truth value is True, the con-
text change must satisfy some condition in T (𝑓1). Otherwise, it should satisfy some condition in T (𝑓2) that is
irrelevant with 𝑝’s sub-tree. This contradicts the fact that 𝑛 is a descendant of 𝑝, so is impossible. Also, 𝑝’s truth
value should be True (only when both children with True truth values, an “and” formula can be evaluated to True).
According to the inductive hypothesis, 𝑝’s truth value will stay True after applying the change. The truth value of
𝑝’s sibling will stay to be True too, because the context change does not affect any of its descendants at all. Thus,
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𝑚’s truth value stays unchanged. When 𝑚’s truth value is False, the context change must satisfy some condition inF (𝑓1). In this case, 𝑝’s current truth value can be either True or False. 𝑝 with a True truth value means that 𝑝’s
sibling is with a False truth value. The False truth value itself ensures that 𝑚’s truth value stays to be False after the
change. When 𝑝 is with a False truth value, by the inductive hypothesis, its truth value after the change stays to be
False, and 𝑚’s truth value thus keeps being False too.

𝒎 is a “𝐧𝐨𝐭” node Let 𝑓 be 𝗇𝗈𝗍
(
𝑓 ′) and 𝑝 corresponds to 𝑓 ′. When 𝑚’s current truth value is True, the context change

must satisfy one condition in F (𝑓 ′). The only possible truth value of 𝑝 is False, and the inductive hypothesis ensures
that it stays unchanged. This, in turn, keeps 𝑚’s truth value unchanged. The analysis is similar when 𝑚’s truth value
is False.

𝒎 is a ∀ node Let 𝑓 be ∀𝑣 ∈ C
(
𝑓 ′) and 𝑝 corresponds to 𝑓 ′. When 𝑚’s truth value is True, the context change must

satisfy some condition in T (𝑓 ′) because it does not directly modify C (so cannot be ⟨+∕−,C⟩). 𝑝’s current truth
value must be True and the inductive hypothesis keeps it unchanged. When 𝑚’s truth value is False, the context
change must satisfy some condition in F (𝑓 ′). If 𝑝’s current truth value is True, 𝑝’s some sibling must be with a
False truth value, and the change does not affect that sibling at all, so the sibling’s truth value will keep 𝑚’s truth
value being False. If 𝑝’s current truth value is False, the inductive hypothesis directly ensures that this truth value
will not change.

Hereafter,𝑚’s parent node is 𝑙. We proceed to prove that if𝑚 is with aTrue truth value, F (𝑓 ) keeps that truth value unchanged,
and if 𝑙 is an “and,” “or,” or “implies” node, the truth value of m’s sibling keeps unchanged too. We analyze the three cases in
the computation of T [𝑓 ] in Fig. 14b respectively.

1. 𝒍 is an “𝐚𝐧𝐝” node. 𝑚’s sibling must be with a False truth value or otherwise 𝑚 cannot be an anchor node. In this case, the
context change that conforms to T [𝑓 ] should be in either  ′

T [𝑓 ] or  ′
F
[
𝑓 ′]. In both cases, the previous proved property

of  ′
T [𝑓 ] and  ′

F
[
𝑓 ′] keeps the two truth values of 𝑚 and 𝑚’s sibling unchanged.

2. 𝒍 is an “𝐢𝐦𝐩𝐥𝐢𝐞𝐬” node and 𝒎 is its left child. m’s sibling must be with a True truth value. In this case, the context change
that conforms to T [𝑓 ] should be in either  ′

T [𝑓 ] or  ′
T
[
𝑓 ′]. Again, the previous proved property of  ′

T [𝑓 ] and  ′
F
[
𝑓 ′]

keeps the two truth values of 𝑚 and 𝑚’s sibling unchanged.

3. Other cases where 𝒎 is with a 𝐓𝐫𝐮𝐞 truth value. It is impossible for 𝑙 to be an “or” node with a True truth value while
𝑚 is an anchor node, so 𝑙 is either a ∀ node or an ∃ node. In these cases, T [𝑓 ] is just  ′

T [𝑓 ]. The previously proved
property of  ′

T [𝑓 ] keeps 𝑚’s truth value unchanged.

We can similarly prove such a property for F [𝑓 ].
Eventually, the computation of [𝑓 ]𝛼 is just picking up T[𝑓 ] or F[𝑓 ] according to 𝑚’s truth value at runtime. When the

truth value is True, the above property of T [𝑓 ] keeps 𝑚’s truth value unchanged after applying the context change, and when
the truth value is False, the property of F [𝑓 ] covers the opposite case.

Combining all the above steps, we conclude the proof. □
With Theorems 3 and Theorem 4, we can guarantee an anchor node to be untainted after applying a context change that meets

any escape condition. Therefore, we can safely escape truth value evaluation for the sub-tree rooted at it because the re-evaluated
truth values will not affect the final result at all.

4.5 Reduced Truth Value Evaluation based on Escape Conditions
Given anchor nodes and their escape conditions, we can reduce unnecessary truth value evaluation. As mentioned before in
Section 2.2.1, the truth value evaluation is conducted in a bottom-up manner, i.e., by a post-order traversal: a node is evaluated
only after all its children have been evaluated. Our reduced truth value evaluation provides a fast path for this process.

Alg. 2 depicts the algorithm. It recursively evaluates the whole CCT as usual until the context change meets the escape
conditions of some anchor node (Line 5 and Line 6). If that happens, the fast path directly returns the previously evaluated truth
value (Line 7).
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Algorithm 2 Reduced Truth Value Evaluation based on Escape Conditions
1: procedure EVALUATE(cct, chg)
2: return EVALUATENODE(cct.root, chg)
3: end procedure
4: procedure EVALUATENODE(currentNode, chg)
5: if currentNode.isAnchor() then
6: if MATCH(currentNode.getEConditions(), chg) then
7: return currentNode.oldTruthValue
8: end if
9: else

10: return ORIGINEVALUATE(currentNode, chg)
11: end if
12: end procedure

4.6 Applying MG+ to Constraint Checking
MG+ refines MG by using the S-CCT information to reduce unnecessary truth value evaluation. This optimization is generic
and can be easily applied to existing constraint checking techniques, e.g., ECC (entire checking)11, PCC (partial checking)11,
and Con-C (concurrent checking)23, too. We discuss these use cases in the following.

Applying MG+ to ECC and Con-C. This is straightforward. Following the aforementioned three steps, MG+ records
anchor nodes after each checking turn, analyzes their escape conditions, and conducts reduced truth value evaluation. The only
difference is that since ECC and Con-C do not save CCT states, MG+ needs to maintain some necessary information, like
previous truth values of anchor nodes, by itself. The time and space cost of such information is reasonable and controllable since
the number of anchor nodes is limited.

Applying MG+ to PCC. This use case deserves some discussion. PCC may reuse truth values of CCT nodes evaluated in
previous checking turns, and these truth values have to be updated in a timely manner before being used to generate links. Simply
escaping truth value evaluation on a sub-tree may cause problems in the subsequent checking process. Thus, we restrict when
we can apply the optimization for PCC. It is conducted only when the anchor node is ∀ or ∃ and the context change directly
modifies the context related to it. Otherwise, we follow PCC’s original truth value evaluation algorithm to control MG+’s
possible influence on PCC’s incremental mechanisms.

5 EVALUATION

In this section, we evaluation and compare MG and MG+ to existing work on their effectiveness on minimizing link generation
and reducing truth value evaluation, and their actual improvement in the efficiency of constraint checking.

5.1 Research Questions
We aim to answer the following three research questions:

RQ1 (Motivation) How does existing link generation (CG and OG) in constraint checking suffer from the link redundancy
problem?

RQ2 (MG Effectiveness) How effective is MG in reducing redundant link generation, as compared to CG and OG?

RQ3 (MG Benefits) How does MG’s minimized link generation contribute to the efficiency improvement of existing constraint
checking (with ECC, PCC, and Con-C)?

RQ4 (MG+ Effectiveness) How effective is the MG+ in reducing truth value evaluation, as compared to the original one in
constraint checking?
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RQ5 (MG+ Benefits) How does MG+’s reduced truth value evaluation contribute to the efficiency improvement of existing
constraint checking (with ECC, PCC, and Con-C)?

5.2 Experimental Design and Setup
We answer RQ1–RQ2 by a comparative study with exhaustively synthesized constraints and controlled factors and answer
RQ3–RQ5 by a case study with real-world data. We explain the evaluation design and setup below.

5.2.1 RQ1 and RQ2
We study the characteristics of different link generation techniques on link redundancy. We use synthesized constraints to conduct
the study to explore all possible formula structures. The synthesis is briefly an exhaustive enumeration process. For example,
there is one type of 1-layer formula: 𝑏𝑓𝑢𝑛𝑐, and to construct 2-layer formulas, we traverse all 1-layer formulas and combine
them using logical conjunctions (“and,” “or,” “implies,” and “not”) and quantifiers (∀ and ∃), and so on. An example of these
synthesized formulas is the following 3-layer one:

∀𝑣 ∈ 𝐶 ((𝑏𝑓𝑢𝑛𝑐) 𝖺𝗇𝖽 (𝑏𝑓𝑢𝑛𝑐))

Obviously, there must be a height limit for the synthesized constraints, or otherwise, we will get infinite ones. We set the limit
to 4 and get 1,658 well-formed constraints. We choose this limit due to two reasons: (1) 1,658 is already a sufficient number that
includes various constraints, covering enough kinds of formula structures for our analysis; (2) increasing the height limit to 5
will drastically add over 108 more constraints, and that overwhelms computational capability of any computer.

With these synthesized constraints, we decide how to calculate 𝑏𝑓𝑢𝑛𝑐 values which do not carry real semantics in a synthesized
formula. Though, one can simulate the calculation of their values by two parameters: (1) the number 𝑙 of elements in the constraint
contexts, and (2) the probability 𝑝 of whether a 𝑏𝑓𝑢𝑛𝑐 returns True or False. For example, if we set 𝑙 to 5 and 𝑝 to 0.05, there will
be five branches at runtime in the CCT constructed from the constraint ∀𝑣 ∈ C (𝑏𝑓𝑢𝑛𝑐), and each leaf (a 𝑏𝑓𝑢𝑛𝑐) returns True
with a 0.05 probability. We test 𝑙 set to be 2, 5, 10, 15, and 20, and 𝑝 set to be 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, and 0.99
to cover different scenes of constraint checking. These factors are designed as independent variables. For each configuration
decided by these independent variables, we repeat experiments 5,000 times to alleviate possible bias caused by randomness.

We use link utilization rates (ULRs) to reveal the severity of link redundancy. A ULR is computed by dividing the number of
actually used links by the number of total links. A higher ULR means less link redundancy and a 100% ULR means absolutely
no redundancy (all links are actually used). To answer RQ1, we compare the ULRs of CG and OG on different constraints.
We calculate their average to show how severe the problem is and their ranges to show the heterogeneity of these constraints.
Also, we calculate the standard deviation of ULRs when applying CG and OG to check the stability of the performance of these
techniques. To answer RQ1, we assess the ULRs after applying MG (MG+ has no difference with MG on link redundancy) to
explore its improvement over CG and OG.

5.2.2 RQ3–RQ5
We follow existing work11,23,24,25 to use a real-world application, SmartCity, with its large-volume taxi-driving data in the case
study to evaluate the actual impact of MG and MG+ on the efficiency of performance. Also, in the case study, we assess the
effectiveness of MG+ on reducing truth value evaluation. Since truth values must hold real semantics to precisely assess MG+,
we cannot use the aforementioned synthesized constraints to do that.

The SmartCity application is used by the transportation department of a city in southern China to manage and guide taxi
driving. The data are heavy, and they change frequently due to vehicles’ quick motions and complex behaviors (e.g., turning,
picking up a passenger, and going off duty). The staff collected a total of 1.55 million raw taxi data covering 760 vehicles within a
continuous period of 24 hours (as sample data for research purposes). The data were transformed to 6.75 million context changes,
with respect to the application’s deployed 22 consistency constraints (for continually guarding the correctness of the data used
by the smart guidance functionalities in the application). These constraints cover different aspects of vehicles’ movements with
respect to their surrounding environments, e.g., speed limit, highway layouts, driving direction, etc.

We fed these data and constraints to constraint checking techniques with CG, OG, and MG, respectively, and counted (1) the
number of evaluated truth values to assess how effective MG+ is in reducing truth value evaluation (RQ4) and (2) the time of
link generation, truth value evaluation, and the whole checking process to assess the actual impacts of MG and MG+ on the
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Figure 15 Averaged ULRs for CG and OG
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Figure 16 ULR ranges for CG and OG

efficiency of constraint checking (RQ3 and RQ5). A small number of evaluated truth values will mean that MG+ successfully
reduces much truth value evaluation, and a short checking time will mean MG/MG+ improves the efficiency of constraint
checking. These three RQs (3, 4, and 5) were evaluated in a case study setting where one checked massive data from the above
real-world SmartCity application with 6.75 million context changes. Therefore, we conducted the corresponding experiments by
running and collecting the time of different steps and also the total time of constraint checking for completing all data checking
and outputting detected inconsistencies.

5.2.3 Implementation and the Running Environment
We implement our method in Java. The code and data with a document about how to run our implementation are released on
GitHub32. All experiments were conducted on a commodity PC with one Intel Core i7-10750H CPU @ 2.60GHz and 15GiB
RAM. The PC was installed with Ubuntu 21.10 and Java SE 17.0.1.

5.3 Result Analyses
5.3.1 RQ1 (Motivation)
Fig. 15 illustrates the averaged ULR measures for CG and OG across all 1,658 consistency constraints. In the figure, each line
is the ULR of a constraint (the same for Fig. 16 and Fig. 17 after). We order these constraints according to their ascending
ULR tends for CG and OG, respectively, for better illustration. We also mark the 25%, 50%, 75% quantiles by dashed lines for
reference.

From Fig. 15, we observe that both CG and OG suffered seriously from the link redundancy problem, resulting in very low
averaged ULR measures, e.g., [<1%, 77%] for CG and [<1%, 91%] for OG. In particular, 1,203 (72.6%) and 952 (57.4%) con-
straints have averaged ULR measures less than 25% (i.e., link redundancy over 75%), and only 5 (0.3%) and 7 (0.4%) constraints
have averaged ULR measures over 75% (i.e., link redundancy less than 25%), for CG and OG, respectively. When accumulating
the area above and below each curve, CG caused a total of 83% redundant links and OG still caused 75% redundant links for all
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constraints. Therefore, when taking into account all types of constraints, CG seriously suffers from the link redundancy problem,
and OG improves a little but the benefits are very limited. This strongly calls for the new efforts to identify and eliminate such
redundancy and such efforts must be flexible to cope with all types of constraints.

We also illustrate the ULR ranges for CG and OG across these 1,658 constraints in Fig. 16, which were caused under different
settings (e.g., different contexts and 𝑏𝑓𝑢𝑛𝑐 results). From the figure, we observe that both CG and OG are very unstable in
generating links in terms of link redundancy. For example, around half of all constraints have a ULR range over 50% for both
CG and OG. These data echoes the standard deviation of different constraints, 21.52% for CG and 23.26% for OG, which are
quite high for a ratio ranging from 0 to 100%. Note that OG is even more unstable than CG, for it has wider ULR ranges (see
Fig. 16) and a larger standard diviation. This suggests that even for a single constraint, a good link generation technique has to
be flexible to cope with its dynamic information (e.g., contexts and 𝑏𝑓𝑢𝑛𝑐 results), so as to realize an overall high ULR. This
also echoes our MG’s idea that combines both static (constraint type and syntax) and dynamic (runtime truth values) analysis
in identifying and removing redundant link generation.

Therefore, we conclude that both CG and OG significantly affected by the issue of link redundancy, underscoring the urgent
need for new research to address this problem. New research efforts must take care of static and dynamic analysis in the constraint
checking to achieve the identification and elimination of redundant link generation.

5.3.2 RQ2 (MG Effectiveness)
Fig. 17 compares the averaged ULR measures for CG, OG, and MG across all 1,658 constraints. This gives an intuitive and
exhaustive picture of how a specific link generation technique works for all types of constraints. We make the comparisons
aligned for each constraint to better illustrate the differences among the three techniques.

Regarding the averaged ULR measures, we observe that CG ranges from <1% to 77% and OG ranges from <1% to 91%. Al-
though the overall improvement is clear, the ULR gaps between CG and OG are very inconsistent with respect to different types
of constraints. This suggests that different constraints imposed different challenges for reducing redundant link generations, and
a sole static analysis technique like OG cannot cope with all situations. On the other hand, for our MG technique, it achieved
a landslide victory by reaching an always 100% ULR measure, as it promised. This suggests that MG realizes both success-
fully identifying all redundant link generations and automatically adapting to different constraints according to their inherent
characteristics. We owe the ability to MGs dedicatedly designed static-dynamic hybrid analysis. Note that MG’s absolute im-
provements on the averaged ULR measures can be 23–100% (mean: 83%) over CG and 9–100% (mean: 75%) over OG, which
are significant.

Therefore, we conclude that MG can effectively identify and eliminate all link redundancy in the constraint checking and are
capable of adapting to all constraint types.

5.3.3 RQ3 (MG Benefits)
Fig. 18 compares the time costs in the link generation for CG, OG, and MG under the real-world application scenario with 22
consistency constraints and 6.75 million context data.
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Table 1 Comparisons on truth value calculations between MG and MG+

Technique MG’s Calculations (#) MG+’s Calculations (#) Reduction (%)
ECC/Con-C 8.911E10 4.479E10 49.74%

PCC 8.911E10 8.909E10 0.02%

From the figure, we observe that when combined with different constraint checking techniques, although CG, OG, and MG
incurred different time costs, MG always worked most efficiently. For example, MG spent only 0.14–0.34 minutes, while CG
spent 2.41–70.75 minutes and OG spent 2.11–67.53 minutes. We note that all the three techniques generated exactly the same
final links in the constraint checking (all correct), and thus MG’s efficiency improvements on the link generation totally attributes
to its greatly reduced link redundancy. In particular, MG reduced 93.8–99.8% time cost (or 15–504x speedup) over CG, and 92.9–
99.8% time cost (or 13–481x speedup) over OG, respectively. We owe MG’s significant time reduction on the link generation
to its dramatically removed redundant link generation. To see it, we illustrate CG’s, OG’s, and MG’s generated links in Fig. 15.
We observe that MG’s links (ULR = 100%) occupy only <1% of CG’s links (ULR = 0.13%), while OG’s links (ULR = 0.14%)
occupy 96.7% of CG’s links. MG’s differences from CG and OG are indeed huge. Besides, MG’s time reduction over existing
work (CG and OG) is comparable (with similar orders of magnitude) to its MG’s link reduction, and this suggests that MG’s
internal S-CCT maintenance overhead is extremely small.

As aforementioned, the link generation is only part of the whole constraint checking, which also includes the truth value
evaluation. Therefore, we also studied how MG’s improvement on the link generation helps towards the improvement on the
checking efficiency of the whole constraint checking. Note that the truth value evaluation is not affected by MG, and thus MG’s
contribution could be alleviated. Still, we observe from the measurement that MG reduced 26.2–45.2% time cost over CG for
the whole constraint checking, and 22.3–45.4% time cost over OG, respectively. Note that this achievement was obtained over
MG’s internal overhead, which is extremely small, almost negligible (second-level). This also suggests that as a kernel step
in the constraint checking, the improvement on the link generation can indeed bring additional benefits to existing constraint
checking techniques, and the benefits can apply to all such techniques in a generic and transparent way.

Therefore, we conclude that MG can bring significant efficiency improvements on the link generation (15–504x over CG and
13–481x over OG), and promising improvements even on the whole constraint checking (26.2–45.2% time reduction over CG
and 22.3–45.4% time reduction over OG).
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5.3.4 RQ4 (MG+ Effectiveness)
Table 1 compares the number of calculated truth values between MG and MG+, combined with ECC, PCC, and Con-C under
the case study scenario. Note that when MG is adopted, this means traditional truth value evaluation is used and all nodes’ truth
values need to be evaluated during the whole checking, either calculating from scratch like ECC and Con-C, or inheriting the
latest values from the checking history like PCC.

From the table, MG evaluates a total of 8.911 × 1010 truth values during the whole checking under the real-world application
scenario with 22 consistency constraints and 6.75 million context data. However, when MG+ is adopted, some of truth values are
escaped from any calculation due to MG+’s escape condition analyses. Indeed, MG+’s reduced truth value evaluation actually
alleviates the workloads of truth value evaluation in constraint checking. To be specific, MG+ only needs to evaluate 4.479×1010
truth values in total, successfully reducing around 49.74% calculations for ECC and Con-C. When MG+ is applied to PCC, as
we discussed in Section 4.6, in order to preserve PCC’s incremental mechanism, MG+’s reduction is restricted therefore some
escapable truth values would still be calculated in case of their potential usages in future for PCC. Therefore, MG+ only reduces
0.02% truth value calculations for PCC, still smaller than those of MG. Based on obvious reductions in truth value evaluation,
we expect that MG+ can also improve MG’s efficiency in constraint checking.

Therefore, we conclude that MG+ can significantly reduce around half of truth value calculations for ECC and Con-C.
Although for PCC, the reduction is small, it is still positive.

5.3.5 RQ5 (MG+ Benefits)
Fig. 20 compares the truth value evaluation time between MG and MG+, when they are combined with ECC, PCC, and Con-C.
From the figure, we observe that when combined with ECC and Con-C, MG+ reduces 45.74% and 47.0% time cost in the truth
value evaluation. This echoes the reduction rate of calculated truth values as we discussed in RQ4. Besides, although MG+’s
reduction on calculated truth values is relatively marginal (0.02%), we still observe that MG+ can achieve 19.0% checking time
reduction as compared to MG, when PCC is adopted. This is because, when applying MG+ to PCC, we emphasize reducing
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truth value calculations, especially to ∀ and ∃ anchor nodes. Although these nodes’ reduced truth values may be small in number,
they usually occupy the most time costs during the evaluation due to their complex logics.

Note that most computations of MG+ algorithms are static and can be conducted ahead of time (i.e., not at runtime). Therefore,
the runtime overheads were only less than hundreds of milliseconds, as compared to the total checking time at the level of several
hours. Therefore, we believe that all the above improvements are achieved over MG+’s internal overhead, which is negligible.
So we did not explicitly include it in the results.

Concerning the total checking time, including both truth value evaluation and link generation steps, we also investigate how
MG+ (targeting both steps) and MG (targeting the link generation step) actually improve the checking efficiency individually.
Fig. 21 gives the total checking time when CG, OG, MG, MG+ are combined for ECC, PCC, and Con-C. We can observe that
MG’s minimized link generation can help reduce 26.2–45.2% time cost over CG for the whole constraint checking, and 22.3–
45.4% time cost over OG. As compared to MG, MG+’s additional reduced truth value evaluation can further reduce 7.4–28.2%
time cost over MG for the whole constraint checking. To sum up, MG+ can reduce 31.7–61.0% time cost over CG for the whole
constraint checking, and 28.0–60.0% time cost over OG.

Therefore, we conclude that by reducing quite a number of truth value calculations during the evaluation, MG+ can achieve
obvious efficiency improvements against MG by additionally saving 19.0–47.0% time for truth value evaluation, thus together
saving 7.4–28.2% time for the whole constraint checking as compared to MG.

5.4 Threats to Validity
We analyze the construct validity, internal validity, and external validity of our evaluation.

5.4.1 Construct Validity
We measure the effectiveness of CG, OG, MG, and MG+ by their link utilization rates, numbers of evaluated truth values, and
checking time. These metrics are complete, and can directly reflect the performance of different techniques.

Validity of link utilization rates. We measured link utilization rates for CG, OG, MG/MG+ to assess the effectiveness of
MG/MG+ on eliminating link redundancy. Link utilization rates are the ratio of actually used links to all links. Obviously, a
higher link utilization rate means lower redundancy, and a 100% link utilization rate means no redundancy. Link utilization rates
can directly reflect the severity of the link redundancy problem when applying a link generation technique.

Validity of numbers of evaluated truth values. We measured the numbers of evaluated truth values of CG, OG, MG, and
MG+ combined with different constraint checking techniques (ECC, PCC, and Con-C) to assess the effectiveness of MG+ on
reducing truth value evaluation. Similarly, a smaller number of evaluated truth value means fewer calculations performed during
the truth value evaluation step, and a good truth value evaluation reduction technique of course produces fewer truth values. The
value directly reflects the performance of the reduction.

Validity of checking time. We measured the checking time of CG, OG, MG, and MG+ combined with different constraint
checking techniques (ECC, PCC, and Con-C) to assess the actual impacts of MG and MG+’s optimizations. The total checking
time constructs of three parts, viz., constructing and maintaining CCTs, truth value evaluation, and link generation. The par-
tition is complete since all constraint checking techniques have to build up CCTs, evaluate truth values on them, and generate
links according to the truth values whatever the implementation is. Other time costs (e.g., launching a Java Virtual Machine)
are specific to implementations and may vary. They are irrelevant to constraint checking. To evaluate MG and MG+, we spe-
cially analyze the link generation time (for minimized link generation), the truth value evaluation time (for reduced truth value
evaluation), and the total time (for overall performance). The step of constructing and maintaining CCTs is irrelevant to the op-
timizations of MG and MG+ and stays identical in all compared techniques (CG, OG, MG, and MG+), so we did not explicitly
analyze this part of the breakdown.

5.4.2 Internal Validity
The internal validity may be affected by implementation bias and bugs.
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Alleviating implementation bias. To avoid implementation bias, we re-implement all existing techniques within the same
code base of MG and MG+. They share the same underlying data structures and algorithms, and the only difference is the
constraint checking mechanism (truth value evaluation and link generation). This ensure fair play as much as possible.

Avoiding bugs. We use differential testing and metamorphic testing to avoid bugs to our best. The scenario of constraint
checking are intrinsically haunted by the oracle problem33,34,11,23,24,25,35. The complexity and dynamicity of the data under check-
ing makes it impossible to directly give known-to-be-correct results to validate our implementation. To address this problem,
we conduct differential testing, i.e., testing the code by comparing results from different implementations (our implementation
and implementation from previous works) and ensuring their consistency. Also, we conduct metamorphic testing using tools
from literature35, i.e., testing the code by constructing multiple inputs in a way that the corresponding outputs must conforms
to some relations, and feeding these inputs to our implementation to check whether any relation is violated. We did not find any
bug in our implementation insofar as differential testing and metamorphic testing can guarantee the correctness.

5.4.3 External Validity
Possible threats to the external validity of our evaluation are (1) whether it can cover all possible situations that our tech-
niques may encounter (exhaustiveness), and (2) whether it can reflect the actual performance of our techniques in the real world
(actuality).

Exhaustiveness. There are two aspects of exhaustiveness. First, MG and MG+ may be applied to different constraint check-
ing techniques. We selected representatives for existing research lines, viz., ECC as the baseline, PCC for incremental checking,
and Con-C for parallel checking to ensure this aspect. In the evaluation, we combined MG and MG+ with these representatives
respectively to evaluate their performance. Second, MG and MG+ have to handle different types of constraints. It is impossible
to completely fulfill this aspect of exhaustiveness because of the infinite number of all possible constraints. However, we try
our best by synthesizing all well-formed constraints not higher than 4 layers and conduct simulated experiments on them under
different parameters in a comparative study. There are 1,658 such constraints. It is a sufficient number to draw statistically sig-
nificant conclusion on the effectiveness of our methods, and extending the height limit to 5 brought us over 108 more constraints,
which obviously exceeds ability of any computer to perform experiments.

Actuality. To ensure that our evaluation can reflect the actual performance of our techniques in the real world, we conduct
a case study on a real-world SmartCity application with constraints written by their programmers and millions of context data
collected by sensors in the system. The case study obtained consistent results, echoing our earlier comparative study.

6 RELATED WORK

Our work improves the efficiency of constraint checking, and constraint checking extends two research lines in software engi-
neering, viz., the oracle problem and the constraint solving techniques. Moreover, our ideas are inspired by works that reduce
redundant computation to boost software efficiency in other fields. We proceed to elaborate these related topics one by one.

6.1 Consistency Management and Constraint Checking
Software artifacts that evolve over time may encounter abnormal behaviors, i.e., inconsistencies, caused by broken code or
unexpected scenarios. Managing the consistency of such software artifacts facilitates the delivery of adaptive and smart services
by the associate applications.

Traditional software artifacts evolve slowly. Consistency management for these artifacts focuses on reliability, i.e., correct and
complete detection of any inconsistencies. There is much consistency management literature for such artifacts, including XML
documents9,36,37,38, UML models39,40,41, set-and-relation-based models42, workflows43,44, and distributed algorithms45.

However, emerging software artifacts with high complexity and dynamicity require consistency management with extremely
high efficiency, and previous techniques for traditional software artifacts are incompetent.

One such software artifact is contexts. They are structural information collected from the application’s runtime environment to
guide how it reacts to instant and complicated environmental events. Some examples of contexts are vision and voice instructions
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to a humanoid companion robot46, air composition at a specific site47, and locations and speeds of vehicles1,2. It is vital for these
applications to provide correct and real-time reactions. Otherwise, the users may suffer from economic or even personal losses.

This stirs up a strong demand for context consistency management with high efficiency. One way is data-centric checking,
including noise inditification by assertions48,49,50,51,52, anomaly filtering48, fuzzy matching53, sequence-based rules49, water-
marks54, and probabilistic methods55. However, these approaches may miss many inconsistencies when they involve multiple
context elements and complex relations between them.

Another way is constraint checking. It identifies and reasons about context inconsistencies by validating them against prede-
fined rules9,17,56,57. These rules are about expected relations that the context elements should satisfy so they can achieve higher
preciseness and soundness. This enables proper and timely resolution of context inconsistencies19,20,21. Researchers propose
various techniques to accelerate constraint checking, e.g., full checking (ECC)9, incremental checking (PCC)11, CPU-based
parallel checking (Con-C)23, and GPU-based parallel checking (GAIN)24. Another interesting direction of efficiency optimiza-
tion on constraint checking is selectively deciding the time points at which the constraint checking should be scheduled and
suppressing unnecessary scheduling25,12. In this way, the times of scheduled checking turns are reduced, and the efficiency of
constraint checking is indirectly improved.

6.2 The Oracle Problem
Constraint checking is related to an expansive research topic about how to identify abnormal behaviors of software. It is formu-
lated as the oracle problem34. The oracle problem focuses on how we could identify bugs when we could not derive expected
outputs for complex software systems, e.g., compilers58,59,60,61, language virtual machines62,63, neural networks64,65, and SMT
solvers66.

One way is differential testing, which tests the correctness of an implementation by cross-validating its outputs to other
implementations34,67,62. However, the availability of multiple implementations34 and the non-determinism in the system under
test67 may hinder the adoption of differential testing.

The second way is metamorphic testing that intentionally constructs multiple inputs, so the corresponding outputs must sat-
isfy some specific relation33. The key point of metamorphic testing is finding a proper relation to which the inputs and outputs
should conform. Such a relation is a semantic property of the software under testing that requires highly professional domain
knowledge to discover. Some examples are behaviors of the compiled programs after dead code elimination59, logical consis-
tency of multiple logical formulas66, and semantic consistency of image labels or query answers64,65. However, the difficulty of
finding such good relations hinders metamorphic testing from being widely used.

Another way is assertions over each output34. Unlike in metamorphic testing, assertions check consistency within each single
output. Similar to metamorphic testing, it is hard to write proper assertions that can depict the expected behavior34. Also, since
assertions cannot express complex relations between multiple inputs and outputs, their code coverage may be limited34.

Constraint checking can be used to conduct metamorphic testing or assertion testing. However, they have different focuses.
Testing techniques like metamorphic testing and assertion testing care about the preciseness and completeness of found bugs,
but constraint checking cares about the efficiency of this process.

6.3 Constraint Solving
Constraint checking also relates to a more general field of constraint solving, where the properties of cyber-objects like programs
can be expressed as logical constraints, and the satisfiability of these constraints relates the concerned objects to these properties.
Such constraint solving techniques include popular Z368 and CVC469. Vast applications can query constraint solvers to get
information that assists their functionalities, e.g., symbolic execution tools70,71 use them to decide whether a program path
is feasible, program synthesizers72 use them to compute possible solutions for integers in the program yet to synthesize, and
program verifiers73,74 leverage them to decide whether a program conforms to certain correctness specifications. The constraints
checked by such constraint solvers are usually quite generic to cover as many application scenarios as possible and also simple
enough to facilitate automatic collection. Due to these features of the constraints, constraint solvers confront various challenges
such as the checking efficiency problem75 and opaque third-party functions76. The context consistency management problem
studied in this article usually requires high efficiency and customized manipulation of rich semantic information. Though with
many works to improve the drawbacks of constraint solvers77,78,78, their performance is still far from being able to fit in the
constraint checking scenarios.
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6.4 Redundant Computation Reduction
Our work opens a potential new direction to support more efficient context inconsistency detection by removing redundant link
generation and truth value evaluation rather than directly increasing the checking efficiency. It echoes redundant-computation-
reduction work from other fields, e.g., avoiding redundant table scans to speed up the SQL-MapReduce task translation79,
avoiding redundant computations to speed up GNN training80, and simplifying floating-point computations to speed up look-
table operations in neural networks81. Although the principles are similar, these research efforts are closely bound to their
subjects and thus not applicable to our problem.

7 CONCLUSION

In this article, we address the issue of link redundancy in constraint checking and introduce a groundbreaking method, MG,
designed to automatically detect and eliminate unnecessary link creation without affecting the outcome of checks. We have
theoretically validated the soundness and completeness of MG and demonstrated its effectiveness through a comparative study
with synthesized consistency constraints and a case study using extensive real-world context data. The findings confirm MG’s
capability to remove all link redundancy, enhancing link generation efficiency by 15–504x compared to previous methods.
Furthermore, MG contributes to the detection of context inconsistencies by offering an additional efficiency increase, achieving
up to a 45.4% reduction in time, which can be applied across all existing constraint checking techniques. By incorporating
an escape-condition analysis that minimizes needless truth value evaluations, based on MG’s thorough analysis, the enhanced
version, MG+, achieves further reductions in constraint checking time by up to 28.2% beyond MG’s improvements, cumulatively
cutting the total checking duration by as much as 61.0%.

For our future research, we aim to explore strategies for automatically reformulating consistency constraints to eliminate
redundancy inherently, moving beyond runtime solutions. This approach has the potential to be more cost-efficient for certain
applications by ensuring that constraints are designed to be redundancy-free from the outset. Additionally, we plan to extend the
validation of MG to encompass more complex constraints and dynamic application contexts, such as those involving unmanned
drones and self-driving vehicles. This expansion may allow us to assess MG’s applicability and effectiveness across a wider
range of scenarios, thereby further broadening its utility.
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