
INFUSE: Towards Efficient Context Consistency
by Incremental-Concurrent Check Fusion

Lingyu Zhang, Huiyan Wang, Chang Xu, and Ping Yu

Context-aware Computing
• Context: a model of applications’ runtime environments[9-12]

• E.g., GPS data, speed, temperature, picture, etc.

• Usage: applications’ smart adaptions based on contexts facilitate people’s
lives

2
SmartHome application

Context Problem
• Quality problems: inaccurate, incomplete, or conflicting with each other due

to uncontrollable sensor instability[9-12]

• Unexpected consequence: leading to applications’ misbehaviors or crashes

3
Misbehavior: improper temperature

• Constraint checking: checking contexts against consistency constraints to see
whether any violation (named context inconsistency) occurs

• Constraint example: “no robot can be in two rooms at the same time”

Common Practice

4

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙:∀ 𝑣𝑣𝑥𝑥 ∈ 𝑅𝑅𝑥𝑥 (not (∃ 𝑣𝑣𝑦𝑦 ∈ 𝑅𝑅𝑦𝑦 (Same(𝑣𝑣𝑥𝑥 , 𝑣𝑣𝑦𝑦))))

• Two typical research lines

Existing Constraint Checking Techniques

5

Full checking (ECC[5])Concurrent checking (Con-C[11])

Split checking workload into
units carrying similar workloads

Reduce redundant computing by
analyzing reusable results

Incremental checking (PCC[10])

Multi-threads Reusable results (gray parts)

Low-efficiency Problem of Existing Techniques

6Call for more efficient checking techniques

• Features of context in nowadays dynamic environment: large volume and
changing frequently

• Bringing unacceptable overhead to existing techniques

Technique Time cost
ECC 19.1 ~ 137.7 h

Con-C 11.2 ~ 68.0 h
PCC 3.3 ~ 5.9 h

Time cost of existing techniques for handling one-hour context data in SmartCity application
(1.7 million data lines and 48 constraints)

Cannot validate in time

Our Natural Idea: Check Fusion
• Two orthogonal dimensions: PCC (2006) and Con-C (2013)

7

No substantial work after one decade since their initial proposals

The more, the better
small workload not suitable to split

The less, the better
large workload hard to analyze

Fuse together

Fusion gap

Con-C’s underlying assumption PCC’s underlying assumption

Concurrent checking (Con-C) Incremental checking (PCC)

Two Brute-Force Solutions Do not Work
• Respect “the less, the better”: splitting small workload into concurrent units

8

Concurrent checking (Con-C) Incremental checking (PCC)

INFUSE0

Technique Checking time
INFUSE0 ≥ 46.7 min

PCC 26.4 ~ 44.2 min
Checking time comparison from our evaluation

Performance compromise: even less efficient
than pure incremental checking

Split into units

The less, the betterThe more, the better

Two Brute-Force Solutions Do not Work
• Respect “the more, the better”: enlarging workload for fusion checking

9

Interference between workloads
leads to wrong checking results

PCC’s semantics was not designed
for multiple workloads

Enlarge workload

Concurrent checking (Con-C) Incremental checking (PCC)
The less, the betterThe more, the better

Two Faced Problems
• Summary of two brute-force solutions

• Respect “the less, the better”: correct but inefficient
• Respect “the more, the better”: efficient but incorrect

• Two problems for achieving both correctness and efficiency
• What-To-Check: Which workloads can be checked together?
• How-To-Check: How to correctly conduct fusion checking for multiple workloads?

10

What-To-Check: Example

11

Rx

Ry

r1

r2

P0

2. r2 leaves room 𝑦𝑦

3. r2 enters room 𝑦𝑦 5.r3 enters room 𝑥𝑥

6. r3 leaves room 𝑥𝑥4. r3 leaves room 𝑦𝑦

1. r3 enters room 𝑦𝑦

<+, Ry, r3> <+, Ry, r2> <+, Rx, r3>

<−, Ry, r2> <−, Rx, r3><−, Ry, r3>

Robots’ movements induce context changes to update contexts along the timeline
Missed by sensor

Context: robots in a room at a certain time

• Robot localization application
• Three robots (r1, r2, and r3) move between two rooms (x and y)

Timeline

What-To-Check: Example

1212

Rx

Ry

r1

r2

<+, Ry, r3> <−, Ry, r2> <+, Ry, r2> <+, Rx, r3> <−, Rx, r3>

chg1 chg2 chg3 chg4 chg5

P0 P2

Rx

Ry

r1

r2

P1

r3

Rx

Ry

r1

r3

Rx

Ry

r1

r2

P3

r3

Rx

Ry

r1

r2

P4

r3

r3
Rx

Ry

r1

r2

P5

r3

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙:∀ 𝑣𝑣𝑥𝑥 ∈ 𝑅𝑅𝑥𝑥 (not (∃ 𝑣𝑣𝑦𝑦 ∈ 𝑅𝑅𝑦𝑦 (Same(𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦))))

What-To-Check: Example

1313

Rx

Ry

r1

r2

<+, Ry, r3> <−, Ry, r2> <+, Ry, r2> <+, Rx, r3> <−, Rx, r3>

chg1 chg2 chg3 chg4 chg5

P0 P2

Rx

Ry

r1

r2

P1

r3

Rx

Ry

r1

r3

Rx

Ry

r1

r2

P3

r3

Rx

Ry

r1

r2

P4

r3

r3
Rx

Ry

r1

r2

P5

r3

Inc={𝑣𝑣𝑥𝑥 = 𝑟𝑟3, 𝑣𝑣𝑦𝑦 = 𝑟𝑟3 }chg1 chg2 chg3 chg4 chg5

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙:∀ 𝑣𝑣𝑥𝑥 ∈ 𝑅𝑅𝑥𝑥 (not (∃ 𝑣𝑣𝑦𝑦 ∈ 𝑅𝑅𝑦𝑦 (Same(𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦))))

Correct but time consuming

What-To-Check: Example

1414

Rx

Ry

r1

r2

<+, Ry, r3> <−, Ry, r2> <+, Ry, r2> <+, Rx, r3> <−, Rx, r3>

chg1 chg2 chg3 chg4 chg5

P0 P2

Rx

Ry

r1

r2

P1

r3

Rx

Ry

r1

r3

Rx

Ry

r1

r2

P3

r3

Rx

Ry

r1

r2

P4

r3

r3
Rx

Ry

r1

r2

P5

r3

chg1 chg2 chg3 chg4 chg5

No detected incschg1 chg2 chg3 chg4 chg5

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙:∀ 𝑣𝑣𝑥𝑥 ∈ 𝑅𝑅𝑥𝑥 (not (∃ 𝑣𝑣𝑦𝑦 ∈ 𝑅𝑅𝑦𝑦 (Same(𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦))))

Inc={𝑣𝑣𝑥𝑥 = 𝑟𝑟3, 𝑣𝑣𝑦𝑦 = 𝑟𝑟3 }

Not valid

Cannot compromise validity for efficiency

Pursuing Efficiency with Validity Guarantee
• Goal: composing a group with context changes as many as possible while

guaranteeing the correctness of checking results

15

How to Pursue Efficiency with Validity Guaranteed?

16

Rx

Ry

r1

r2

<+, Ry, r3> <−, Ry, r2> <+, Ry, r2> <+, Rx, r3> <−, Rx, r3>

chg1 chg2 chg3 chg4 chg5

P0 P2

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙:∀ 𝑣𝑣𝑥𝑥 ∈ 𝑅𝑅𝑥𝑥 (not (∃ 𝑣𝑣𝑦𝑦 ∈ 𝑅𝑅𝑦𝑦 (Same(𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦))))

Rx

Ry

r1

r2

P1

r3

Rx

Ry

r1

r3

Rx

Ry

r1

r2

P3

r3

Rx

Ry

r1

r2

P4

r3

r3
Rx

Ry

r1

r2

P5

r3

Inc={𝑣𝑣𝑥𝑥 = 𝑟𝑟3, 𝑣𝑣𝑦𝑦 = 𝑟𝑟3 }chg1 chg2 chg3 chg4 chg5

No detected incschg1 chg2 chg3 chg4 chg5

Inc={𝑣𝑣𝑥𝑥 = 𝑟𝑟3, 𝑣𝑣𝑦𝑦 = 𝑟𝑟3 }chg1 chg2 chg3 chg4 chg5

Not valid

Valid

What makes the two groups different in validity?

Interference Between Changes Breaks Validity

17

chg1 chg2 chg3

chg4

chg5

chg1 chg2 chg3 chg4

Not valid

Valid

Inc={𝑣𝑣𝑥𝑥 = 𝑟𝑟3, 𝑣𝑣𝑦𝑦 = 𝑟𝑟3}

chg4

chg5
No inc

Expose the inc
No inc

Hide the inc

Timeline

Interference

How many roles can context changes play
concerning inconsistency occurrence?

Different roles

Validity Criterion
• Three roles of context changes concerning inconsistency occurrence

• Interference: E-change followed by H-change (may not be contiguous)

• Validity criterion: avoiding any interference in a group
18

E-change H-change I-change

Possibly expose new
inconsistencies

Possibly hide existing
inconsistencies

Irrelevant to any
inconsistency

chg1 chg2 chg3 chg5chg4

E-change I-change E-change E-change H-change

Interference

How to know the role of a context change?

• Efficient: only related to static structure of constraints and previous checking
results

Knowing the Role by Bottom-up Derivation

19

Derivation rules

∀ 𝑣𝑣𝑥𝑥 ∈ Rx

𝑛𝑛𝑛𝑛𝑛𝑛

∃ 𝑣𝑣𝑦𝑦 ∈ Ry

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎(𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦)

𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙:∀ 𝑣𝑣𝑥𝑥 ∈ 𝑅𝑅𝑥𝑥 (not (∃ 𝑣𝑣𝑦𝑦 ∈ 𝑅𝑅𝑦𝑦 (Same(𝑣𝑣𝑥𝑥 , 𝑣𝑣𝑦𝑦))))

chg1: <+, Ry, r3>

E-change

Composing Groups by Validity Criterion

20

Timeline
chg1 chg2 chg3 chg5chg4

chg1 No interference

chg1 No interferencechg2

chg1 No interferencechg2 chg3

chg1 No interferencechg2 chg3 chg4

chg1 Interferencechg2 chg3 chg4 chg5

E-change

E-change I-change

E-change I-change E-change

E-change I-change E-change E-change

E-change I-change E-change E-change H-change

Two Faced Problems
• What-To-Check

• Which workloads can be checked together for enlarging workload?

• How-To-Check
• How to correctly conduct fusion checking after enlarging workload?

21

PCC’s semantics was not designed
for multiple workloads

Enlarge workload

chg1 chg2 chg3 chg4

A group of context changes

PCC Originally Designed for Single Context Change

22

• Incremental checking in PCC

• Incremental checking we need

chg4chg1 chg2 chg3
P0 P4

chg1 chg2
P0 P1 P2

chg3 chg4
P3 P4

Checking
results

Checking
results

Checking
results

Checking
results

Checking
results

Checking
results

Checking
results

How to know the difference of
contexts between P0 and P4 ?

Require new semantics

Core of incremental checking: difference
of contexts before and after changing

Cumulative Effects Show the Difference
• Accumulate context changes’ effects on contexts in their temporal orders

23

<+, Ry, r3> <−, Ry, r2> <+, Ry, r2> <+, Rx, r3>
ASet: r3 DSet:∅ USet: ∅For Rx

ASet: r3 DSet:∅ USet: {r2}For Ry

ASet DSet USet
Truly added elements Truly deleted elements Updated elements

Cumulative effects
P0 P4

Extending PCC’s Capability to a Group of Changes
• Divide incremental checking into several mutually exclusive cases according

to cumulative effects

24

Incremental semantics for universal formula

ASet ∅ {𝑎𝑎} ∅ ∅ ∅ {𝑎𝑎} {𝑎𝑎} {𝑎𝑎}
Dset ∅ ∅ {𝑑𝑑} ∅ {𝑑𝑑} ∅ {𝑑𝑑} {𝑑𝑑}
USet ∅ ∅ ∅ {𝑢𝑢} {𝑢𝑢} {𝑢𝑢} ∅ {𝑢𝑢}

ASet ∅ {𝑎𝑎} ∅ ∅ ∅ {𝑎𝑎} {𝑎𝑎} {𝑎𝑎}
Dset ∅ ∅ {𝑑𝑑} ∅ {𝑑𝑑} ∅ {𝑑𝑑} {𝑑𝑑}
USet ∅ ∅ ∅ {𝑢𝑢} {𝑢𝑢} {𝑢𝑢} ∅ {𝑢𝑢}

When subformula not affected
(Affected(𝑓𝑓) = F)

When subformula affected
(Affected(𝑓𝑓) = T)

How to fuse concurrent checking?

Concurrent Point Selection
• Concurrent point: indicating where concurrent checking starts

• Selection criterion: the highest affected universal or existential formula

25

∀ 𝑣𝑣𝑥𝑥 ∈ Rx

𝑛𝑛𝑛𝑛𝑛𝑛

∃ 𝑣𝑣𝑦𝑦 ∈ Ry

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎(𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦)

ASet: r3 DSet:∅ USet: ∅

ASet: r3 DSet:∅ USet: {r2}

Sufficient workload to be split into units Units contain similar workloads due to
different variable assignments

Concurrent point
Cumulative effects for Rx

Cumulative effects for Ry

Affected

Affected

26

Incremental semantics

Concurrent semantics

Full semantics

Concurrent or not

Adaptive Switching among Different Semantics
When further checking required

How to further check

Two Faced Problems
• What-To-Check

• Which workloads can be checked together for enlarging workload?

• How-To-Check
• How to correctly conduct fusion checking after enlarging workload?

27

Theoretical Guarantee
• What-To-Check

• Which workloads can be checked together for enlarging workload?

• How-To-Check
• How to correctly conduct fusion checking after enlarging workload?

28

WHAT-Correctness Theorem
Given any consistency constraint and associated context pool, INFUSE

produces the same result for its arranged valid context changes, no matter
it checks these changes as a whole or individually.

HOW-Correctness Theorem
Given any consistency constraint and associated context pool, INFUSE

produces the same result by its check fusion semantics, as existing
constraint checking techniques do.

Evaluation
• Research Questions

• RQ1 (Motivation): How do existing constraint checking techniques behave when
handling large-volume dynamic contexts? (already shown earlier)

• RQ2 (Effectiveness): How effective is INFUSE in constraint checking for detecting
context inconsistencies, as compared with existing techniques?

• RQ3 (Practical Usage): How effective is INFUSE in constraint checking under real-life
settings?

29

Experimental Design and Set Up
• Subjects

• SmartCity application with 4.3 million vehicle data (e.g., GPS data, speed, direction)
and 48 consistency constraints (also used in existing work[9-12] for evaluation)

• Workloads
• Three distinct hour-based groups of data with light (311,240 changes), median

(843,686 changes) and heavy (1,664,900 changes) workloads

• Techniques for comparison
• Two versions in our work: INFUSE (elite version), INFUSE0 (brute-force version)
• Existing techniques and their improved versions: ECCO[5] , ECCG, Con-CO[11] , Con-CG,

PCCO[10] , PCCG

30

RQ2 (Effectiveness)
• Checking time comparison for all techniques on all workloads

31

Time comparison on light workload Time comparison on median workload

Time comparison on heavy workload

Most efficient with 0.0x-
18.6x improvement

Most efficient with 2.4x-
105.4x improvement

Most efficient with 3.1x-
171.1x improvement INFUSE was the most efficient

technique on all workloads

RQ2 (Effectiveness)
• Checking time comparison for all techniques on all workloads

32

Time comparison on light workload Time comparison on median workload

Time comparison on heavy workload

0.4x efficiency improvement
for INFUSE0

5.1x efficiency improvement
for INFUSE0

6.0x efficiency improvement
for INFUSE0

Difference between INFUSE and
INFUSE0 was large and kept increasing

Valid Context Change Groups

Fusion Soundness

RQ3 (Practical usage)
• Simulate real-life settings according to real timestamps

33

10.8

All techniques reported correct
checking results, but INFUSE

took the least time

False negative rate
False positive rate

RQ3 (Practical usage)
• False negative/positive rates are more crucial since they reflects correctness

34

456.6

2954.6

0.0% 0.0%

0.0% 0.0%

9.6%

93.4%

9.4%
10.0%

9.6%

7.4%
9.2%
7.2%

7.5%
93.1%

95.8% 93.7%
92.0%96.8%

98.7% 92.1%
98.4%
96.5%
97.3%
96.8%
96.0%
96.6%

93.0%
95.5%
94.5%
95.4%
96.0%
95.5%

INFUSE still took the least time

INFUSE still reported correct
checking results while others

suffered from varying degrees of
quality problems

The less, the better

Effective under real-life
settings

Conclusion and Future Work

35

• Work summary
• Addressed what-to-check and how-to-check problems of fusion checking with

theoretical guarantee
• 18.6x–171.1x speed up to existing techniques with quality guarantees

• Future work
• Less conservative grouping strategy
• Adaptive concurrency control

Thank you!

36

Comments are welcome!

Email: zly@smail.nju.edu.cn

Experimental Results of all 24 hours data (1)

37
Time comparison for all 24-hour data

Most efficient with 3.0x-120.3x
efficiency improvement

Experimental Results of all 24 hours data (2)

38

INFUSE’s efficiency improvement over existing checking techniques on 24
hour-based groups (sorted by increasing workloads)

With the growth of workload, INFUSE’s efficiency
improvement generally hold a stably increasing trend.

Experimental Results of all 24 hours data (3)

39

The less red color the better

INFUSE achieved zero false negative and positive for almost all groups

	INFUSE: Towards Efficient Context Consistency �by Incremental-Concurrent Check Fusion
	Context-aware Computing
	Context Problem
	Common Practice
	Existing Constraint Checking Techniques
	Low-efficiency Problem of Existing Techniques
	Our Natural Idea: Check Fusion
	Two Brute-Force Solutions Do not Work
	Two Brute-Force Solutions Do not Work
	Two Faced Problems
	What-To-Check: Example
	What-To-Check: Example
	What-To-Check: Example
	What-To-Check: Example
	Pursuing Efficiency with Validity Guarantee
	How to Pursue Efficiency with Validity Guaranteed?
	Interference Between Changes Breaks Validity
	Validity Criterion
	Knowing the Role by Bottom-up Derivation
	Composing Groups by Validity Criterion
	Two Faced Problems
	PCC Originally Designed for Single Context Change
	Cumulative Effects Show the Difference
	Extending PCC’s Capability to a Group of Changes
	Concurrent Point Selection
	Adaptive Switching among Different Semantics
	Two Faced Problems
	Theoretical Guarantee
	Evaluation
	Experimental Design and Set Up
	RQ2 (Effectiveness)
	RQ2 (Effectiveness)
	RQ3 (Practical usage)
	RQ3 (Practical usage)
	Conclusion and Future Work
	Thank you!
	Experimental Results of all 24 hours data (1)
	Experimental Results of all 24 hours data (2)
	Experimental Results of all 24 hours data (3)

