

INFUSE: Towards Efficient Context Consistency by Incremental-Concurrent Check Fusion

Lingyu Zhang, Huiyan Wang, Chang Xu, and Ping Yu

Context-aware Computing

- Context: a model of applications' runtime environments^[9-12]
 - E.g., GPS data, speed, temperature, picture, etc.
- Usage: applications' smart adaptions based on contexts facilitate people's lives

SmartHome application

Context Problem

- Quality problems: inaccurate, incomplete, or conflicting with each other due to uncontrollable sensor instability^[9-12]
- Unexpected consequence: leading to applications' misbehaviors or crashes

Misbehavior: improper temperature

Common Practice

 Constraint checking: checking contexts against consistency constraints to see whether any violation (named context inconsistency) occurs

• Constraint example: "no robot can be in two rooms at the same time"

 S_{loc} : $\forall v_x \in R_x (not (\exists v_y \in R_y (Same(v_x, v_y))))$

Existing Constraint Checking Techniques

Low-efficiency Problem of Existing Techniques

- Features of context in nowadays dynamic environment: large volume and changing frequently
- Bringing unacceptable overhead to existing techniques

Technique	Time cost	
ECC	19.1 ~ 137.7 h	
Con-C	11.2 ~ 68.0 h	Cannot validate in time
PCC	3.3 ~ 5.9 h	

Time cost of existing techniques for handling one-hour context data in SmartCity application

(1.7 million data lines and 48 constraints)

Call for more efficient checking techniques

Our Natural Idea: Check Fusion

• Two orthogonal dimensions: PCC (2006) and Con-C (2013)

No substantial work after one decade since their initial proposals

Two Brute-Force Solutions Do not Work

• Respect "the less, the better": splitting small workload into concurrent units

Performance compromise: even less efficient than pure incremental checking

Two Brute-Force Solutions Do not Work

• Respect "the more, the better": enlarging workload for fusion checking

Two Faced Problems

- Summary of two brute-force solutions
 - Respect "the less, the better": correct but inefficient
 - Respect "the more, the better": efficient but incorrect
- Two problems for achieving both correctness and efficiency
 - What-To-Check: Which workloads can be checked together?
 - How-To-Check: How to correctly conduct fusion checking for multiple workloads?

- Robot localization application
 - Three robots (r₁, r₂, and r₃) move between two rooms (x and y)

Correct but time consuming

Cannot compromise validity for efficiency

Pursuing Efficiency with Validity Guarantee

 Goal: composing a group with context changes as many as possible while guaranteeing the correctness of checking results

How to Pursue Efficiency with Validity Guaranteed?

What makes the two groups different in validity?

Interference Between Changes Breaks Validity

Validity Criterion

• Three roles of context changes concerning inconsistency occurrence

E-chang	ze –	H-change		I-change
		· · · · · · · · · · · · · · · · · · ·		
Possibly expo inconsister		Possibly hide existinconsistencies	<u> </u>	rrelevant to any inconsistency

• Interference: E-change followed by H-change (may not be contiguous)

• Validity criterion: avoiding any interference in a group

Knowing the Role by Bottom-up Derivation

 S_{loc} : $\forall v_x \in R_x (not (\exists v_v \in R_v (Same(v_x, v_v))))$ E-change $\forall v_x \in \mathbf{R}_x$ not $chg_1: <+, R_y, r_3>$ $\exists v_v \in \mathbf{R}_v$ $Same(v_x, v_y)$

- impact(*chg*, $\forall v \in C(f)$) = (1) base_impact(chg, \forall), when chg affects C, (2) impact(*chg*, f) \cup {m_{FF}}, when *chg* affects f; - impact(*chg*, $\exists v \in C(f)$) = (1) base impact(chg, \exists), when chg affects C, (2) impact(chg, f) \cup {m_{TT}}, when chg affects f; - impact(chg, not (f)) = flipSet(impact(chg, f)); - impact(chg, (f_1) and (f_2)) = (1) impact(*chg*, f_1) \cup {m_{FF}}, when *chg* affects f_1 , (2) impact(chg, f_2) \cup {m_{FF}}, when chg affects f_2 ; - impact(chg, (f_1) or (f_2)) = (1) impact(*chg*, f_1) \cup {m_{TT}}, when *chg* affects f_1 , (2) impact(*chg*, f_2) \cup {m_{TT}}, when *chg* affects f_2 ; - impact(chg, (f_1) implies (f_2)) = (1) flipSet(impact(*chg*, f_1)) \cup {m_{TT}}, when *chg* affects f_1 , (2) impact(chg, f_2) \cup {m_{TT}}, when chg affects f_2 .

Derivation rules

 Efficient: only related to static structure of constraints and previous checking results

Composing Groups by Validity Criterion

Two Faced Problems

- What-To-Check
 - Which workloads can be checked together for enlarging workload?

How-To-Check

How to correctly conduct fusion checking after enlarging workload?

PCC Originally Designed for Single Context Change

Incremental checking in PCC

Cumulative Effects Show the Difference

Accumulate context changes' effects on contexts in their temporal orders

Extending PCC's Capability to a Group of Changes

 Divide incremental checking into several mutually exclusive cases according to cumulative effects

									How to fuse concurrent checking?								
ASet	Ø	{ <i>a</i> }	Ø	Ø	Ø	$\{a\}$	$\{a\}$	$\{a\}$									
Dset	Ø	Ø	$\{d\}$	Ø	$\{d\}$	Ø	$\{d\}$	$\{d\}$	$\tau_{\text{partial}} [\forall v \in C(f)]_{\alpha} =$								
									(1) $\tau_0[\forall v \in C(f)]_{\alpha}$, if Affected $(f) = F$ and $(ASet = \emptyset \text{ and } DSet = \emptyset \text{ and } USet = \emptyset)$.								
USet	Ø	Ø	Ø	$\{u\}$	$ \{u\}$	$\{u\}$	Ø	$ \{u\} $	$(2) \ \tau_0[\forall v \in C(f)]_{\alpha} \wedge t_1 \wedge \dots \wedge t_a, \text{where } (t_1, \dots, t_a) = \text{eval}_{\text{entire}}(\tau[f]_{\text{bind}((v, y_j), \alpha)} \mid y_j \in ASet),$								
	Uset \emptyset \emptyset \emptyset $[u]$ $[u]$ $[u]$ $[u]$ \emptyset $[u]$ When subformula not affected $(2) \tau_0 [\forall v \in C(f)]_{\alpha} \wedge t_1 \wedge \cdots \wedge t_a, \text{ where } (t_1, \cdots, t_a) = \text{eval}_{\text{entire}}(\tau[f]_{\text{bind}((v,y_j),\alpha)} y_j \in ASet),$ $(3) T \wedge \tau_0[f]_{\text{bind}((v,y_j),\alpha)} \wedge \tau_0[f]_{\text{bind}((v,y_j)$																
Wł	nen	sub	otori	mul	a no	ot af	fect	ed	$(3) T \land \tau_0[f]_{bind((v,x_1),\alpha)} \land \dots \land \tau_0[f]_{bind((v,x_n-a-u),\alpha)} \land t_1 \land \dots \land t_{a+u} \mid x_i \in C - (ASet \cup USet)),$								
		(Af	fect	ed(f) =	= F)			where $(t_1, \dots, t_{a+u}) = \text{eval}_{\text{entire}}(\tau[f]_{\text{bind}((v, y_i), \alpha)} \mid y_j \in ASet \cup USet),$								
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			J				if Affected(f) = F and $(DSet \neq \emptyset \text{ or } USet \neq \emptyset)$.								
									(4) $T \wedge t_1 \wedge \cdots \wedge t_n$, where $(t_1, \cdots, t_n) = eval_{partial}(\tau[f]_{bind((v, x_i), \alpha)} \mid x_i \in C)$,								
ASet	Ø	$\{a\}$	Ø	Ø	Ø	Sal	Sal	(a)	if Affected(f) = T and (ASet = \emptyset and $DSet = \emptyset$ and $USet = \emptyset$).								
noct	Ŷ	{u}	Ψ	Ŵ	Ŵ	<i>{u}</i>	<i>{u}</i>	$\{a\}$	(5) $T \wedge t_1 \wedge \cdots \wedge t_n$, where $(t_1, \cdots, t_{a+u}) = \text{eval}_{\text{entire}}(\tau[f]_{\text{bind}((v,y_j),\alpha)} \mid y_j \in ASet \cup USet)$								
Dset	Ø	Ø	$\{d\}$	Ø	$\{d\}$	Ø	{A}	$\{d\}$	and $(t_{a+u+1}, \dots, t_n) = \text{eval}_{\text{partial}}(\tau[f]_{\text{bind}((v,x_i),\alpha)} \mid x_i \in C - (ASet \cup USet)),$								
	Ŷ	Ŷ	luj	Ŷ	las		las	las	if Affected(f) = T and ($ASet \neq \emptyset$ or $DSet \neq \emptyset$ or $USet \neq \emptyset$).								
USet	Ø	Ø	Ø	$\{11\}$	$\{u\}$	$\{1\}$	Ø	$\{u\}$	$\frac{1}{2} \frac{1}{2} \frac{1}$								
		~	~	(~)					Incremental semantics for universal formula								
le la	Nhe	en s	ubfo	orm	ula a	affe	cted	1									
					• • • • • • • • • • • •				24								
		(AT	тест	ea(<i>f</i>) =	= : : :) :											

Concurrent Point Selection

- Concurrent point: indicating where concurrent checking starts
- Selection criterion: the highest affected universal or existential formula

Sufficient workload to be split into units

Units contain similar workloads due to different variable assignments

25

Adaptive Switching among Different Semantics

Two Faced Problems

- What-To-Check
 - Which workloads can be checked together for enlarging workload?

- How-To-Check
 - How to correctly conduct fusion checking after enlarging workload?

27

Theoretical Guarantee

- What-To-Check
 - Which workloads can be checked together for enlarging workload?

WHAT-Correctness Theorem

Given any consistency constraint and associated context pool, INFUSE produces the same result for its arranged valid context changes, no matter it checks these changes as a whole or individually.

How-To-Check

• How to correctly conduct fusion checking after enlarging workload?

28

HOW-Correctness Theorem

Given any consistency constraint and associated context pool, INFUSE produces the same result by its check fusion semantics, as existing constraint checking techniques do.

Evaluation

Research Questions

- RQ1 (Motivation): How do existing constraint checking techniques behave when handling large-volume dynamic contexts? (already shown earlier)
- RQ2 (Effectiveness): How effective is INFUSE in constraint checking for detecting context inconsistencies, as compared with existing techniques?
- RQ3 (Practical Usage): How effective is INFUSE in constraint checking under real-life settings?

Experimental Design and Set Up

Subjects

 SmartCity application with 4.3 million vehicle data (e.g., GPS data, speed, direction) and 48 consistency constraints (also used in existing work^[9-12] for evaluation)

Workloads

 Three distinct hour-based groups of data with light (311,240 changes), median (843,686 changes) and heavy (1,664,900 changes) workloads

Techniques for comparison

- Two versions in our work: INFUSE (elite version), INFUSE₀ (brute-force version)
- Existing techniques and their improved versions: $ECC_0{}^{[5]}$, ECC_G , $Con-C_0{}^{[11]}$, $Con-C_G$, $PCC_0{}^{[10]}$, PCC_G

RQ2 (Effectiveness)

• Checking time comparison for all techniques on all workloads

RQ2 (Effectiveness)

• Checking time comparison for all techniques on all workloads

32

RQ3 (Practical usage)

• Simulate real-life settings according to real timestamps

Workload	Checking techniques	Oracle incs (#)	Reported incs/* (#)	$T_{\rm cost}(s)$	$R_{FN}(\%)$	$R_{FP}(\%)$
	ECC _O		3,254	128.6	0.0%	0.0%
	Con-C _O		3,254	54.3	0.0%	0.0%
	PCC _O		3,254	12.8	0.0%	0.0%
Light	ECC_G	3,254	3,254	26.9	0.0%	0.0%
Light	Con-C _G	3,234	3,254	16.9	0.0%	0.0%
	PCC_G		3,254	13.1	0.0%	0.0%
	INFUSE ₀		3,254	13.1	0.0%	0.0%
	INFUSE		3,254	10.8	0.0%	0.0%

False negative rate False positive rate

All techniques reported correct checking results, but INFUSE took **the least time**

RQ3 (Practical usage)

• False negative/positive rates are more crucial since they reflects correctness

Workload	Checking techniques	Oracle incs (#)	Reported incs/* (#)	$T_{\rm cost}(s)$	$R_{FN}(\%)$	$R_{FP}(\%)$		
	ECC _O		8,647/694*	3,850.9	96.8%	92.0%		
	Con-C _O		14,209/897*	3,593.9	95.8%	93.7%		
	PCC _O		20,942/19,369*	1,513.7	9.6%	7.5%		
Workload techniq ECC Con-C PCC ECC ECC INFU INFU INFU ECC ECC Con-C	ECC_G	21,436	20,412/1,415*	3,588.4	93.4%	93.1%		
	Con-C _G	21,430	20,779/19,293*	1,950.8	10.0%	7.2%		
	PCC_G		21,377/19,414*	1,099.7	9.4%	9.2%		
	INFUSE ₀		20,922/19,371*	1,588.5	9.6%	7.4%		
	INFUSE		21,436	456.6	0.0%	0.0%		
	ECC _O		4,934/392*	4,032.1	98.7%	92.1%		
	Con-C _O		6,611/463*	3,748.2	98.4%	93.0%		
	PCC _O		22,574/1,028*	3,410.8	96.5%	95.5%		
Heavy	ECC_G	29,642 14,617/801*		3,574.8	97.3%	94.5%		
	Con-C _G	22,042	20,824/957*	3,375.5	96.8%	95.4%		
	PCC_G		29,115/1,178*	3,594.4	96.0%	96.0%		
	INFUSE ₀		22,302/1,013*	3,463.2	96.6%	95.5%		
	INFUSE		29,642	2954.6	0.0%	0.0%		

The less, the better

INFUSE still took **the least time**

INFUSE still **reported correct checking results** while others suffered from varying degrees of quality problems

Effective under real-life

settings

Conclusion and Future Work

- Work summary
 - Addressed what-to-check and how-to-check problems of fusion checking with theoretical guarantee
 - 18.6x–171.1x speed up to existing techniques with quality guarantees

• Future work

- Less conservative grouping strategy
- Adaptive concurrency control

Thank you!

Comments are welcome!

Email: zly@smail.nju.edu.cn

Experimental Results of all 24 hours data (1)

Experimental Results of all 24 hours data (2)

With the growth of workload, INFUSE's efficiency

INFUSE's efficiency improvement over existing checking techniques on 24 hour-based groups (sorted by increasing workloads)

Experimental Results of all 24 hours data (3)

Checking	Matrica		Grou														The less red color the better								
techniques	Metrics	0	1	2	3	4	5	6	7	8	9	10	11	1		ele	255	rec		DIOI	์ เก	le c	bell	.er	23
	$T_{\rm cost}({\sf min})$	57.5	33.9	14.8	4.4	2.1	2.3	18.4	59.1	61.7	64.2	66.8	62.3	6C.J	07.1	01.0	07.0	07.2	U/.2	00.0	00.1	0/	00.7	00.7	J2.6
ECC_O	R _{FN} (%)	95.9%	0.0%	0.0%	0.0%	0.0%	0.0%	84.8%	76.9%	96.6%	96.8%	98.5%	98.5%	98.1%	98.4%	98.6%	98.7%	98.4%	98.7%	98.6%	98.6%	98.4%	98.6%	98.5%	98.3%
	R _{FP} (%)	95.6%	0.0%	0.0%	0.0%	0.0%	0.0%	84.8%	73.4%	93.0%	92.0%	91.6%	92.7%	93.0%	93.7%	92.5%	92.3%	91.0%	92.1%	91.7%	92.0%	91.9%	91.9%	91.7%	93.8%
	$T_{\rm cost}({\sf min})$	29.9	13.0	5.8	1.8	0.9	1.0	7.1	42.7	60.2	59.9	61.0	63.1	60.7	59.8	62.5	60.7	64.3	62.5	63.5	63.3	61.5	63.3	60.8	60.3
Con-C _O	R _{FN} (%)	95.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	25.3%	94.7%	95.8%	97.9%	98.0%	97.9%	97.8%	98.3%	98.4%	98.0%	98.4%	98.2%	98.1%	98.2%	98.1%	98.1%	97.8%
	R _{FP} (%)	95.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	24.1%	93.0%	93.7%	93.0%	93.6%	94.3%	94.5%	93.7%	92.9%	92.7%	93.0%	92.8%	92.8%	93.4%	93.0%	93.3%	95.0%
	T _{cost} (min)	3.4	1.9	0.8	0.4	0.2	0.2	0.8	5.8	19.4	25.2	56.6	57.0	58.5	58.7	56.9	56.7	57.0	56.8	56.9	57.2	56.4	56.4	56.6	58.4
PCC _O	R _{FN} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.6%	96.4%	96.5%	96.3%	94.4%	96.4%	96.6%	96.5%	96.5%	96.3%	96.4%	96.3%	96.2%	96.1%	96.3%
	R _{FP} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	7.5%	95.9%	96.2%	96.2%	94.2%	95.7%	95.6%	95.8%	95.5%	95.4%	95.5%	95.6%	95.3%	95.6%	96.2%
	T _{cost} (min)	11.0	5.3	2.2	0.9	0.4	0.5	2.7	16.4	55.1	59.8	57.7	57.5	58.3	58.6	57.2	58.4	58.2	59.6	58.8	57.8	57.2	56.9	57.6	58.0
ECC_G	R _{FN} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	64.7%	93.4%	96.8%	97.1%	96.4%	97.0%	97.2%	97.3%	96.8%	97.3%	97.0%	97.0%	96.9%	97.2%	96.9%	96.7%
	R _{FP} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	64.5%	93.1%	95.3%	95.9%	95.9%	96.4%	95.3%	94.9%	94.6%	94.5%	94.6%	94.7%	95.2%	95.2%	95.3%	96.2%
	T _{cost} (min)	4.6	2.2	0.9	0.5	0.3	0.3	1.1	6.8	24.3	32.5	57.3	57.2	59.3	58.6	56.3	55.7	56	56.3	56.6	56.1	56.4	56.4	57.2	59.7
$Con-C_G$	R _{FN} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	10.0%	96.5%	96.6%	96.5%	96.3%	96.8%	96.7%	96.5%	96.8%	96.2%	96.4%	96.6%	96.4%	96.2%	96.7%
	R _{FP} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	7.2%	96.2%	96.4%	96.2%	96.2%	96.2%	95.6%	95.8%	95.4%	95.2%	95.6%	96.0%	95.6%	95.7%	96.7%
	T _{cost} (min)	2.6	1.5	0.7	0.3	0.2	0.2	0.6	4.1	13.0	18.3	59.9	60.0	52.2	54.7	59.9	59.9	60.2	59.9	60.0	59.9	59.7	60.1	59.9	54.3
PCC_G	R _{FN} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.4%	96.1%	96.2%	95.4%	67.1%	95.6%	96.2%	95.9%	96.0%	95.7%	95.8%	95.9%	95.6%	95.7%	95.2%
	R _{FP} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.2%	96.1%	96.2%	95.4%	67.0%	95.6%	96.0%	95.9%	96.0%	95.7%	95.6%	95.8%	95.4%	95.5%	95.1%
	$T_{\rm cost}({\sf min})$	3.5	2.0	1.0	0.4	0.2	0.2	0.9	6.2	21.0	26.5	57.0	57.2	58.7	58.0	57.2	57.0	57.5	57.7	56.9	56.8	57.0	57.2	57.2	58.6
INFUSE ₀	R _{FN} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.6%	96.5%	96.4%	96.2%	94.2%	96.4%	96.7%	96.4%	96.6%	96.3%	96.4%	96.5%	96.3%	96.2%	96.4%
	R _{FP} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	7.4%	95.9%	96.1%	96.1%	93.8%	95.7%	95.6%	95.7%	95.5%	95.4%	95.6%	95.7%	95.5%	95.6%	96.3%
	$T_{\rm cost}({\sf min})$	0.9	0.8	0.4	0.2	0.2	0.2	0.3	1.6	4.0	7.6	28.7	27.5	16.2	19.7	39.7	42.0	38.5	49.2	43.6	38.8	32.7	34.8	27.8	16.1
INFUSE	R _{FN} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	R _{FP} (%)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

and 🔤 represent the false negative rate or the false positive rate is 0.0%, (0.0%, 10.0%), [10.0%, 90.0%], and (90.0%, 100.0%] respectively.

INFUSE achieved zero false negative and positive for almost all groups