
INFUSE: Towards Efficient Context Consistency by
Incremental-Concurrent Check Fusion

Lingyu Zhang†‡, Huiyan Wang∗†‡, Chang Xu∗†‡, and Ping Yu†‡
†State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
‡Department of Computer Science and Technology, Nanjing University, Nanjing, China

zly@smail.nju.edu.cn, {why, changxu, yuping}@nju.edu.cn

Abstract—Nowadays applications are getting increasingly at-
tractive by being capable of adapting their behaviors based on
their understanding to running environments (a.k.a. contexts).
However, such capability can be subject to illness or even
unexpected crash, when contexts, for suffering environmental
noises, become inaccurate or even conflict with each other.
Fortunately, various constraint checking techniques have been
proposed to validate contexts against consistency constraints, in
order to guard context consistency for applications in a timely
manner. However, with the growth of environmental dynamics
and context volume, it is getting more and more challenging
to check context consistency in time. In this paper, we propose
a novel approach, INFUSE, to soundly fuse together two lines
of techniques, namely, incremental checking and concurrent
checking, for efficient constraint checking. Realizing such check
fusion has to address the challenges rising from the gap between
the micro analysis for reusable elements in incremental checking
and the macro collection of parallel tasks in concurrent checking.
INFUSE solves the challenges by automatically deciding maximal
concurrent boundaries for context changes under checking (i.e.,
what-correctness problem), and soundly fusing incremental and
concurrent checking for context consistency (i.e., how-correctness
problem), with theoretical guarantees. Our experimental evalu-
ation with real-world data shows that INFUSE could improve
constraint checking efficiency by 18.6x–171.1x, as compared with
existing state-of-the-art techniques.

Index Terms—*Technological, constraint checking, context
consistency, check fusion.

I. INTRODUCTION

Consistency management for software artifacts (e.g., edit

script [1], UML models [2]–[4], and XML documents [5]–

[7]) has received extensive research attention [8]. In the recent

decades, there is an increasing demand for managing the

consistency of contexts, in order to support reliable adapta-

tion behaviors in self-adaptive or context-aware applications.

Unlike traditional software artifacts, contexts, representing an

application’s understanding to its running environment, are

prone to frequent changes, and thus call for efficient constraint

checking techniques for their runtime validation.

The validation is conducted by checking the contexts col-

lected by an application against a set of consistency con-
straints [5], [9] and any constraint violation indicates the

detection of a context inconsistency. Various constraint check-

ing techniques [5], [9]–[12] have been studied with different

efficiency benefits and costs, e.g., xlinkit [5], working in a full

∗
Corresponding authors.

checking way as the correctness baseline, PCC [10], checking

incrementally by reusing previous results, and Con-C [11],

checking concurrently basic units that carry similar workloads.

However, with the growth of environmental dynamics and

context volume, it is getting increasingly challenging to vali-

date context consistency in a timely manner, causing missed

inconsistencies or wrong reports [9].

An intuition is to fuse incremental checking (e.g., PCC [10])

and concurrent checking (e.g., Con-C [11]) for even higher

efficiency. Indeed, they were developed from two orthogonal

dimensions, but their fusion is non-trivial, with no substantial

progress after nearly one decade since their initial proposal.

The challenge probably comes from the following gap: incre-

mental checking analyzes in a fine granularity for reusable

parts in previous checking results, while concurrent checking

requests to maximize parallel tasks. In other words, the former

has to accumulate micro parts (i.e., larger parts not easy for

analysis), but the latter requires macro arrangements (i.e.,

smaller parts not useful for concurrency). If one naively

injects concurrent checking into incremental checking (e.g., by

concurrently conducting the reusable result analysis in a fine

granularity), the performance may instead be compromised

(e.g., even less efficient than incremental checking). On the

other hand, if one aggressively enlarges the analysis granu-

larity of incremental checking, improper grouping of context

changes as a whole can lead to wrong results, denying the

purpose of more efficient checking.

In this paper, we propose INFUSE, (Incremental-

CoNcurrent Fusion ChEcking), to address the two

challenges from the above gap: (1) What-correctness
problem: automatically analyzing and deciding the boundaries

of collected context changes for maximal concurrency (i.e.,

checking these context changes as a whole guarantees to be

correct, as against checking them individually); (2) How-
correctness problem: soundly switching between incremental

and concurrent checking upon the context changes grouped as

a whole for higher efficiency. Both challenges are addressed

with theoretical guarantees.

We experimentally evaluated INFUSE and compared it

to existing constraint checking techniques on dynamic ap-

plication scenarios with real-world data following existing

work [9]–[12]. The experimental results show that INFUSE

could dramatically boost the checking efficiency (up to 18.6x,

105.4x, and 171.1x improvements for light-, median-, and

187

2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/22/$31.00 ©2022 IEEE
DOI 10.1109/ICSME55016.2022.00025

heavy-workload scenarios, respectively), as compared to ex-

isting techniques. When put into the practical scenario simula-

tion, INFUSE won with high efficiency and 100% correctness

of checking results, while existing techniques caused up to

98.7% false negatives and 96.0% false positives.
In summary, we make the following contributions:

• We proposed a novel constraint checking approach, IN-

FUSE, with incremental-concurrent checking techniques

properly fused.

• We proved INFUSE’s properties, namely, what-

correctness for concurrency maximization, and how-

correctness for fusion soundness, together contributing

to INFUSE’s checking correctness and high efficiency.

• We evaluated INFUSE and compared it to state-of-the-art

techniques, observing substantial efficiency improvement

and desirable checking correctness.

The remainder of this article is organized as follows:

Section II introduces the background and formulates our

problem. Section III elaborates on INFUSE’s methodology

with details. Section IV evaluates INFUSE with real-world

scenarios. Section V discusses the related work in recent years,

and finally Section VI concludes this paper.

II. BACKGROUND

A. Preliminary
We define a context as a piece of information about an

application’s running environment (e.g., location, user, activity,

etc.) [9], [10], [12]. Each context can be modeled as a finite

set of relevant elements. For example, in a package delivery

application [9], [10] that schedules transportation robots across

warehouse, all robots currently in warehouse x can be modeled

by a context Cx = {r1, r2, · · · }, in which ri identifies a specific

robot.
We define a context change to be an update to an existing

context, which can be an addition change or deletion change.

We use symbols (“+”, “−”) to represent them, respectively.

Consider this application with context Cx = {r1, r2}. If robot

r3 enters or r2 leaves the warehouse, we have context changes

<+, Cx, r3> or <−, Cx, r2>.
We use context pool to represent the collection of all

contexts interesting to the application. For the aforementioned

application, its context pool is P = {Cx, Cy}, which considers

warehouses x and y.
To validate contexts, one could define consistency con-

straints [5], [9], which model physical laws or application-

specific requirements [5], [9], [10], and check whether any

constraint is violated (when yes, an inconsistency is detected).

Existing work [9], [10], [12] has mostly followed a first order

logic (FOL) styled language to specify consistency constraints:

f :=∀v ∈ C(f) | ∃v ∈ C(f) |
(f) and (f) | (f) or (f) | (f) implies (f) | not (f) |
bfunc(v1, v2, · · · , vn) | True | False.

Here, C represents a context; vi is a variable, taking an

element from C as its value; the bfunc terminal is a domain-

specific function that takes values of variables as input and

Fig. 1. An illustrative example (Pi is the evolving context pool after each
context change).

returns a Boolean value (True or False). For example, one

may define a consistency constraint like “any robot can only be

in one warehouse at the same time” [9], for the aforementioned

application:

Sloc : ∀vx ∈ Cx(not(∃vy ∈ Cy(Same(vx, vy)))).

Incremental checking [10] examines each context change to

analyze its impact on a constraint’s previous checking result,

while concurrent checking [11] would request multiple context

changes for parallelism. In the following, we analyze the

challenges when one combines the two techniques together.

B. Illustrative Example and Challenges

Consider our package delivery application with two ware-

houses (x and y) and three robots (r1, r2, and r3). Suppose that

initially robot r1 is in warehouse x and r2 in y. Then, robot

r3 enters warehouse y, and r2 leaves y and re-enters y. Next,

robots r3 leaves y, enters x, and leaves x in turn. These robot

movements induced a total of six context changes, with <−,

Cy, r3> (chg′) missed (five changes remaining), as illustrated

in Fig. 1 (such missing-read events could be common in RFID-

enabled sensing [13]–[16]).

When one conducts constraint checking on the context pool

upon each context change (as the individual checking illus-

trates in Fig. 1) against the aforementioned Sloc constraint, a

context inconsistency inc1 would be detected at P4 (suggesting

robot r3 in both warehouses x and y). Incremental checking

can work to speed up the checking upon each context change.

If one applies concurrent checking, multiple context changes

have to be considered for parallelism. Then these changes

are applied together and checked as a whole (as the whole
checking illustrates in Fig. 1). However, checking the final

context pool P5 would report no inconsistency. The inconsis-

tency inc1 is missed (or kept hidden in constraint checking)

due to the interference between chg4 and chg5. Therefore,

we consider the sequence of these five changes invalid for

checking together. Then our first question (challenge) arises:

How does one compose constraint checking tasks that both
maximize the parallelism (i.e., involving more context changes)
and guarantee the validity (i.e., inconsistency never made hid-
den)? Fusing incremental checking and concurrent checking

together (or fusion checking) has to answer this question.

188

and
(a) Parallel structure (b) Nested structure
Fig. 2. Two structures of consistency constraints

Now suppose that we have obtained a valid con-

straint checking task, which involves four context changes

(chg1, chg2, chg3, chg4). Then, how can one realize both

incremental checking and concurrent checking on these

changes? The former handles these changes in turn according

to their temporal orders, while the latter parallelizes the

handling of these changes without any temporal order. This

could induce natural logical conflicts (e.g., considering that

change chg3 is to add an element deleted by chg2).

To alleviate the complexity, one might consider grouping

context changes according to different contexts they relate

to, e.g., partitioning context changes into context Cx-related

changes and Cy-related changes. Still, checking the two groups

concurrently may be intertwined. For a consistency constraint

illustrated in Fig.2a with a parallel structure, it could be possi-

ble to handle the two groups of context changes concurrently.

However, if the constraint has a nested structure as illustrated

in Fig.2b, the two groups of changes certainly have intertwined

impacts on the constraint (i.e., depends-on or subsumed), as

concurrent checking would induce unexpected consequences.

Therefore, we have the second question (challenge): How can
fusion checking work correctly?

C. Problem Formulation

We formulate the preceding two questions (challenges) into

two problems, namely, what-correctness and how-correctness.

Given a sequence of context changes under checking, (chg1,

chg2, . . .), Pi represents the evolving context pool after apply-

ing change chgi to existing contexts in pool Pi−1 (let P0 be the

initial pool). We use chk(Pi, s) and Fuse-chk(Pi, s) to denote

the results of the ideal checking and our fusion checking when

examining the contexts in Pi against constraint s. The what-

correctness requests that our fusion checking should produce

the same checking results by checking context changes as a

whole, as compared to checking them individually. That is, it

should carefully decide what context changes to check as a

whole, so as to avoid any interference inside these changes.

Given a checking task (T = (chgm, chgm+1, ..., chgn)), the

what-correctness is as follows:

chk(Pn, s) =
n⋃

i=m

chk(Pi, s) (1)

The how-correctness requests that our fusion checking should

produce the same checking results by fusing incremental

and concurrent checking together, as compared to checking

directly (e.g., by entire [5], incremental [10], or concurrent

checking [11]). It is as follows:

Fuse-chk(Pn, s) = chk(Pn, s) (2)

Fig. 3. Overview of our INFUSE approach

Our fusion checking addresses the two correctness problems

in the next section.

III. METHODOLOGY

A. Approach Overview

Fig. 3 overviews our fusion checking (INFUSE) approach. It

consists of two parts, namely, WHAT-TO-CHECK and HOW-

TO-CHECK, targeting at our preceding two challenges, re-

spectively. The first part decides boundaries of context changes

that are valid to check as a whole (Section III-B), and the

second part realizes the fusion of incremental and concurrent

checking (Section III-C).

In the first part, INFUSE analyzes the impacts of context

changes of different types, examines what impacts would

cause context inconsistencies hidden, and derives validity

criteria for deciding what context changes to group together. In

the second part, INFUSE checks grouped context changes as a

whole using its own incremental-concurrent fusion semantics

for inconsistency detection.

B. WHAT-TO-CHECK: Task Arrangement

INFUSE decides proper boundaries in a sequence of context

changes, so that each decided group of changes are valid to

check as a whole. “Valid” means that no inconsistency would

be hidden in the constraint checking. Each valid group of

context changes composes a constraint checking task.

To decide the validity, we would first investigate the impacts

of different context changes on the checking of a given

consistency constraint. Specifically, if a context change can

cause the constraint’s evaluation from True to False, it tends

to expose an inconsistency. Otherwise, the change can cause

the constraint’s evaluation from False to True, and it tends to

hide an inconsistency. The insight of INFUSE is to analyze and

avoid the combination of such two context changes (otherwise,

the first inconsistency might thus become hidden), but the

challenge is that INFUSE has to decide it before actual

evaluation. Later, based on such impact analysis, INFUSE

derives validity criteria for constraint checking tasks, and

arranges context changes into proper groups.

We elaborate on our idea in three steps.

Step 1: Impact analysis. We now model more precisely a

context change in a form of < type, context, truthvalue >, i.e.,

with a certain truth value.

189

Fig. 4. Example of a universal formula.

TABLE I
BASE IMPACT

Context change ∀v ∈ C(f) ∃v ∈ C(f)

<+, C, U> {mTT, mTF, mFF} {mTT, mFT, mFF}

<−, C, T> {mTT, mFF} {mTT, mTF}

<−, C, F> {mFT, mFF} {mTT, mFF}

<−, C, U> {mTT, mFT, mFF} {mTT, mTF, mFF}

Then all context changes can be partitioned into four cases:

<+, C, U>, <−, C, T>, <−, C, F>, and <−, C, U>. Here,

<+, C, U> denotes an addition change to context C, with

its associated formula not evaluated yet (U: Unevaluated);

<−, C, T> denotes a deletion change to context C, with its

associated formula previously evaluated to True (T: True; F:

False). For example, consider constraint ∀v ∈ C(bfunc(v))
and context C = {r1, r2} as illustrated in Fig. 4 (truth values

annotated). The impact of any addition change (e.g., <+, C,

r3>) can be represented by <+, C, U> since the newly element

r3 has not been evaluated yet for bfunc. The impact of a

deletion change has three cases according to the previous truth

value of the element to delete for bfunc: (1) <−, C, T>, if

the element to delete has been evaluated to True, e.g., <−,

C, r2>; (2) <−, C, F>, if the element has been evaluated to

False, e.g., <−, C, r1>; (3) <−, C, U>, when the element is

just added and has not been evaluated yet, e.g., <−, C, r3>.

We note that only universal and existential formulas are

associated with contexts in consistency constraints, and thus

context changes directly affect such formulas (named base for-
mulas). Consider our preceding constraint Sloc (Section II-A).

Change <−, Cy, r2> directly affects the constraint’s existen-

tial quantifier part (∃vy ∈ Cy) and makes formula ∃vy ∈
Cy(Same(vx, vy)) its base formula. In our illustrative example

in Fig. 1, chg1, chg3 and chg4 are three addition changes

and all belong to the impact case <+, Cx, U> or <+, Cy, U>.

Suppose that the constraint has been evaluated on P0. Then

chg2 belongs to the case of <−, Cy, F> and chg5 belongs to

<−, Cx, U>.

Next we analyze how a context change produces its impact

(a.k.a. base impact) to the concerned base formula, and then

track the impact to the whole constraint (a.k.a. overall impact)
containing this formula.

The base impact has four kinds, namely, mTT, mTF, mFT,

and mFF, representing the truth value of a formula keeping

True, changing from True to False, from False to True, and

keeping False, respectively. Table I lists all base impacts that

can be produced by each particular context change to each

possible base formula. Take the universal formula ∀v ∈ C(f)
as an example. Change <+, C, U> can produce all impacts

Auxiliary functions:

- impact, where impact(chg, f) refers to chg’s impact on f .

- base_impact, where base_impact(chg, ∃/∀) follows Table I.

- flip, where flip(mTT) := mFF; flip(mFF) := mTT; flip(mTF) := mFT;

flip(mFT) := mTF;

- flipSet, where flipSet(M) := {flip(m) | m ∈ M}.

Tracking rules:

- impact(chg, ∀v ∈ C(f)) =

(1) base_impact(chg, ∀), when chg affects C,

(2) impact(chg, f) ∪ {mFF}, when chg affects f ;

- impact(chg, ∃v ∈ C(f)) =

(1) base_impact(chg, ∃), when chg affects C,

(2) impact(chg, f) ∪ {mTT}, when chg affects f ;

- impact(chg, not (f)) = flipSet(impact(chg, f));

- impact(chg, (f1) and (f2)) =

(1) impact(chg, f1) ∪ {mFF}, when chg affects f1,

(2) impact(chg, f2) ∪ {mFF}, when chg affects f2;

- impact(chg, (f1) or (f2)) =

(1) impact(chg, f1) ∪ {mTT}, when chg affects f1,

(2) impact(chg, f2) ∪ {mTT}, when chg affects f2;

- impact(chg, (f1) implies (f2)) =

(1) flipSet(impact(chg, f1)) ∪{mTT}, when chg affects f1,

(2) impact(chg, f2) ∪ {mTT}, when chg affects f2.

Fig. 5. Tracking rules

except mFT, because adding an element into a context can

never make the universal formula evaluated from False to

True, while <−, C, T> can produce only mTT and mFF,

because deleting an element from a context with truth value

of True can never make the universal formula evaluated from

True to False or from False to True. Other cases can be

explained similarly.

Then we follow the tracking rules in Fig. 5 to decide how the

overall impact of a particular context change on a consistency

constraint depends on the base impact of this change on its

associated base formula.

Take universal formula g := ∀v ∈ C(f) for example. We

consider all four impacts: (1) if a change has impact mTT on

f , it leads to g remaining its previous truth value, i.e., having

impact mTT or mFF; (2) if the change has impact mTF, it can

cause g evaluated to False, i.e., having impact mTF or mFF;

(3) if the change has impact mFF, it makes g keep evaluated to

False, i.e., having impact mFF; (4) if the change has impact

mFT, it can cause g to keep evaluated to False or from False
to True, i.e., having impact mFF or mFT. Combining all cases

together, the impact on the universal formula g should be

impact(f) ∪{mFF}. Recursively, one can continue to track the

impact down to formula f . If the tracking already reaches the

base formula the specific change concerns, then the tracking

can terminate with the associated base impact. Other tracking

rules can be explained similarly.

For example, consider context change chg1 = <+, Cy, r3>

in Fig. 1. We model it by <+, Cy, U>, and analyze its overall

190

impact on constraint Sloc as follows:

impact(chg1, ∀vx ∈ Cx(not(∃vy ∈ Cy(Same(vx, vy)))))

= impact(chg1, not(∃vy ∈ Cy(Same(vx, vy)))) ∪ {mFF}
= flipSet(impact(chg1, ∃vy ∈ Cy(Same(vx, vy)))) ∪ {mFF}
= flipSet(base_impact(chg1, ∃)) ∪ {mFF}
= flipSet({mTT,mFT,mFF}) ∪ {mFF}
= {mFF,mTF,mTT}

Similarly, the overall impacts of changes chg2, chg3, chg4,

and chg5 in Fig. 1 can be obtained, i.e., {mTT, mFF}, {mTT,

mTF, mFF}, {mTT, mTF, mFF}, and {mTT, mFT, mFF}.

Step 2: Validity criterion derivation. With analyzed im-

pacts of context changes, we proceed to classify them into

three categories according to how they affect the detection of

context inconsistencies.

Definition 1 (inc-exposing change). Given a consistency
constraint s, if the overall impact of a context change contains
mTF but no mFT, it is an inc-exposing change (or E-change),
suggesting possibly exposing a new inconsistency for s.

Definition 2 (inc-hiding change). Given a constraint s, if
the overall impact of a change contains mFT but no mTF, it
is an inc-hiding change (or H-change), suggesting possibly
hiding an existing inconsistency for s.

Definition 3 (inc-irrelevant change). Given a constraint s,
if the overall impact of a change contains neither mFT nor
mTF, it is an inc-irrelevant change (or I-change), suggesting
irrelevant to detecting any inconsistency.

Note that no context change has both types mFT and mTF,

since (1) any base impact contains at most one such type

(Table I), and (2) tracking rules never breaks this property

(Fig. 5). Therefore, E-change, H-change, and I-change are

complete.

Based on the above definitions, if a constraint checking task

contains any ordered E-change (with mTF) and H-change (with

mFT) pair in its sequence of context changes, it is invalid to

check these changes as a whole (i.e., inconsistency possibly

hidden). Based on this observation, we derive our validity

criterion as follows:

Definition 4 (Validity criterion). Given a constraint check-
ing task with a sequence of context changes, if the sequence
contains any ordered E-change and H-change pair (either
contiguous or not), it is an invalid task; otherwise, valid.

Consider our preceding illustrative example in Fig. 1. Con-

text changes chg1 (<+, Cy, U>), chg3 (<+, Cy, U>), and chg4

(<+, Cx, U>) all have the mTF impact (i.e., E-change), change

chg5 (<−, Cy, U>) has the mFT impact (i.e., H-change), and

the remaining change chg2 has neither of them (i.e., I-change).

Then, consider two tasks: T1 = (chg1, chg2, chg3, chg4,

chg5), and T2 = (chg1, chg2, chg3, chg4). T1 contains an E-

change and H-change (chg5) pair, thus invalid. T2 does not

contain any such pair, thus valid. The results match our earlier

analysis in Section II-B.

Step 3: Task arrangement. With the above validity cri-

terion, INFUSE can compose constraint checking tasks with

valid context changes only.

Algorithm 1 explains how to arrange valid constraint check-

ing tasks. Given a consistency constraint s, when context

change chgnew is collected, INFUSE first analyzes its impact

on s to decide its category (Lines 2–8), i.e., E-/H-/I-change.

Then, if chgnew is an H-change, INFUSE examines whether

there is any existing E-change chg in the current task. If yes

(Line 11), INFUSE conducts fusion checking with all existing

changes in the task (details to be discussed later in the HOW-

TO-CHECK part) (Line 12), and finishes this task (s’s new

task starts with chgnew, Lines 13–14). Otherwise, INFUSE

keeps maximizing a constraint checking task until any possible

E-change and H-change pair occurs.

Algorithm 1: Task arrangement

Input : set of consistency constraints S, new context
change chgnew

Output: set of consistency constraints S (updated)
1 for each s ∈ S do
2 p = impact (chgnew, s);
3 if p contains mFT then
4 chgnew.type = H-change;

5 else if p contains mTF then
6 chgnew.type = E-change;

7 else
8 chgnew.type = I-change;

9 if chgnew.type == H-change then
10 for each change chg in s.Task do
11 if chg.type == E-change then
12 fusionchecking(s.Task, s);
13 s.Task.clear();
14 break;

15 s.Task ← append(chgnew);

16 return S;

We give the following theorem to guarantee that INFUSE

always returns the same checking result by its whole checking

of thus arranged tasks, as compared to individual checking.

Theorem 1 (WHAT-Correctness). Given any consistency
constraint and associated context pool, INFUSE produces the
same result for its arranged valid context changes, no matter
it checks these changes as a whole or individually.

Sketch of proof The theorem can be proved by reduction

to absurdity, showing that each result in individual checking

should be a subset of the final result of whole checking

for any INFUSE-composed constraint checking task, because

otherwise, the validity criterion would be broken. The detailed

proof is at our website [17]. �
In the following, we explain how INFUSE fuses incremental

and concurrent checking to efficiently and soundly handle

valid context changes in each task.

C. HOW-TO-CHECK: Check Fusion

Given a valid constraint checking task, INFUSE fuses incre-

mental and concurrent checking and treats all context changes

in the task as a whole for efficiency. INFUSE first decomposes

191

τ partial[∀v ∈ C(f)]α =
(1) τ0[∀v ∈ C(f)]α, if Affected(f) = F and (ASet = ∅ and DSet = ∅ and USet = ∅).
(2) τ0[∀v ∈ C(f)]α ∧ t1 ∧ · · · ∧ ta,where (t1, · · · , ta) = evalentire(τ [f]bind((v,yj),α) | yj ∈ ASet),

if Affected(f) = F and (ASet 	= ∅ and DSet = ∅ and USet = ∅).
(3) T ∧ τ0[f]bind((v,x1),α) ∧ · · · ∧ τ0[f]bind((v,xn−a−u),α) ∧ t1 ∧ · · · ∧ ta+u | xi ∈ C − (ASet ∪ USet)),

where (t1, · · · , ta+u) = evalentire(τ [f]bind((v,yj),α) | yj ∈ ASet ∪ USet),

if Affected(f) = F and (DSet 	= ∅ or USet 	= ∅).
(4) T ∧ t1 ∧ · · · ∧ tn,where (t1, · · · , tn) = evalpartial(τ [f]bind((v,xi),α) | xi ∈ C),
if Affected(f) = T and (ASet = ∅ and DSet = ∅ and USet = ∅).
(5) T ∧ t1 ∧ · · · ∧ tn,where (t1, · · · , ta+u) = evalentire(τ [f]bind((v,yj),α) | yj ∈ ASet ∪ USet)

and (ta+u+1, · · · , tn) = evalpartial(τ [f]bind((v,xi),α) | xi ∈ C − (ASet ∪ USet)),
if Affected(f) = T and (ASet 	= ∅ or DSet 	= ∅ or USet 	= ∅).

Fig. 6. INFUSE’s partial truth value evaluation semantics for the universal formula.

all changes in a task into several subsets based on their nature,

and then conducts constraint checking by two steps, namely,

truth value evaluation and link generation, which examines

whether the concerned consistency constraint is violated and

why the violation, if any, occurs.

Step 4: Task decomposition. INFUSE first decomposes all

context changes (addition or deletion) in the given constraint

checking task into three subsets, namely, truly added set (or

ASet for short), truly deleted set (DSet) and updated set
(USet) for each consistency constraint. They contain truly
added elements (i.e., not deleted later), truly deleted elements

(not added back later) and updated elements (i.e., deleted

first and added back), respectively. Suppose that context C
eventually becomes C ′ after applying all relevant changes in

task T . Then the three sets can be calculated: ASet = C ′−C,

DSet = C − C ′, and USet = {e|e ∈ C ∩ C ′ ∧ ∃ chg ∈
T (chg =< +/−, C, e >)}.

We define the Affected function to indicate whether a

formula itself or its subformula is affected by the context

changes in a constraint checking task. Given a formula from a

consistency constraint, the Affected function returns T (means

True) if and only if the formula itself or its subformula

references a context involved in the ASet, DSet or USet
associated with this constraint; otherwise, F (means False).

INFUSE would rely on the three subsets to decide when

to switch between incremental checking (by partial checking

semantics later) and concurrent checking (by entire checking

semantics later). The checking is composed of the truth value

evaluation (returning T or F) and link generation (returning

links [10]). The following gives an example link for our pre-

ceding inconsistency detected in the illustrative example (inter-

esting readers can obtain more comprehensive explanations to

links at our website [17]): (violated, {(vx = r3), (vy = r3)}).
Step 5: Truth value evaluation. We use τINFUSE[s] to repre-

sent INFUSE’s truth value evaluation on consistency constraint

s. τINFUSE starts with incremental checking by invoking its

partial checking semantics, i.e., τINFUSE[s] = τpartial[s]α. Here,

α is the variable assignment, which is empty at the beginning

and updated later by the bind function when evaluating

universal or existential subformula in constraint s to add new

τ entire[∀v ∈ C(f)]α =
T ∧ τentire[f]bind((v,x1),α) ∧ · · · ∧ τentire[f]bind((v,xn),α)|xi ∈ C

Fig. 7. INFUSE’s entire truth value evaluation semantics for the universal
formula.

evalentire(τ [f]bind((v,xi),α) | xi ∈ Set) =
(1) τentire[f]bind((v,x1),α) ‖ · · · ‖ τentire[f]bind((v,xs),α),
if ∀v ∈ C(f) is a concurrent point;
(2) τentire[f]bind((v,x1),α) ; · · · ; τentire[f]bind((v,xs),α),
otherwise.

evalpartial(τ [f]bind((v,xi),α) | xi ∈ Set) =
(1) τpartial[f]bind((v,x1),α) ‖ · · · ‖ τpartial[f]bind((v,xs),α),
if ∀v ∈ C(f) is a concurrent point;
(2) τpartial[f]bind((v,x1),α) ; · · · ; τpartial[f]bind((v,xs),α),
otherwise.

Fig. 8. Semantics of the eval functions (partial and entire checking)

variable bindings into α. Due to the page limit, we take the

universal formula as an example to explain INFUSE’s truth

value evaluation. A full treatment of all formula types is

accessible at our website [17].

Consider universal formula ∀v ∈ C(f). Suppose that all

context changes in a constraint checking task have been

decomposed into related ASet, DSet, and USet. Fig. 6 gives

INFUSE’s partial truth value evaluation on semantics (five

cases).

(1) If no change affects the universal formula or its sub-

formula, then this formula’s previous truth value τ0 is

reusable.

(2) If the changes affect the universal formula only by adding

new elements into context C only, then this formula’s

previous truth value τ0 is reusable, and one can update it

with evaluation results of the new elements from ASet,
by the evalentire function in Fig. 8 and τentire semantics in

Fig. 7 (“entire” due to new elements (no reusable results);

concurrent evaluations may be applied (explained later)).

(3) If the changes affect the universal formula only by

deleting existing elements from, or updating them in,

192

Lpartial[∀v ∈ C(f)]α =
(1) L0[∀v ∈ C(f)]α, if Affected(f) = F and (ASet = ∅ and DSet = ∅ and USet = ∅).
(2) L0[∀v ∈ C(f)]α ∪ ({(violated, {v, y1})} ⊗ l1) ∪ · · · ∪ ({(violated, {v, ya′})} ⊗ la′),

where (l1, · · · , la′) = genentire(L[f]bind((v,yj),α) | yj ∈ ASet ∧ τ [f]bind((v,yj),α) = F),
if Affected(f) = F and (ASet 	= ∅ and DSet = ∅ and USet = ∅).
(3) ({(violated, {v, y1})} ⊗ l1) ∪ · · · ∪ ({(violated, {v, ya′+u′})} ⊗ la′+u′)∪

{l | l ∈ {(violated, {(v, xi)})} ⊗ L0[f]bind((v,xi),α)}| xi ∈ C − (ASet ∪ USet) ∧ τ [f]bind((v,xi),α) = F,
where (l1, · · · , la′+u′) = genentire(L[f]bind((v,yj),α)| yj ∈ ASet ∪ USet ∧ τ [f]bind((v,yj),α) = F),

if Affected(f) = F and (DSet 	= ∅ or USet 	= ∅).
(4) ∅ ∪ ({(violated, {v, x1})} ⊗ l1) ∪ · · · ∪ ({(violated, {v, xn′})} ⊗ ln′),

where (l1, · · · , ln′) = genpartial(L[f]bind((v,xi),α) | xi ∈ C ∧ τ [f]bind((v,xi),α) = F),
if Affected(f) = T and (ASet = ∅ and DSet = ∅ and USet = ∅).
(5) ∅ ∪ ({(violated, {v, y1})} ⊗ l1) ∪ · · · ∪ ({(violated, {v, yn′})} ⊗ ln′),

where (l1, · · · , la′+u′) = genentire(L[f]bind((v,yj),α) | yj ∈ ASet ∪ USet ∧ τ [f]bind((v,yj),α) = F)
and (la′+u′+1, · · · ln′) = genpartial(L[f]bind((v,xi),α) | xi ∈ C − (ASet ∪ USet) ∧ τ [f]bind((v,xi),α) = F),

if Affected(f) = T and (ASet 	= ∅ or DSet 	= ∅ or USet 	= ∅).
Fig. 9. INFUSE’s partial link generation semantics for the universal formula.

Lentire[∀v ∈ C(f)]α =
{l | l ∈ {(violated, {(v, xi)})} ⊗ Lentire[f]bind((v,xi),α)}
| xi ∈ C ∧ τ [f]bind((v,xi),α) = F).

Fig. 10. INFUSE’s entire link generation semantics for the universal formula.

context C, then the evaluation results of the remaining

elements in C (i.e., C − (ASet ∪ USet)) are reusable,

and those of the other elements should be calculated by

the evalentire function similarly.

(4) If the changes affect the subformula only, then the eval-

uation results of all elements in C should be updated by

the evalpartial function in Fig. 8 (“partial” due to elements

not changed (some reusability possible)).

(5) Otherwise, the changes affect both the universal formula

and its subformula, then one has to update the evaluation

results of unchanged elements (i.e., C− (ASet∪USet))
by the evalpartial function and those of changed elements

((ASet ∪ USet)) by the evalentire function.

We note that in the evalentire and the evalpartial functions,

concurrent checking can be applied to conduct parallel eval-

uations as in Fig. 8 (“‖” means concurrent and “;” means

sequential), since these evaluations are independent of each

other.

We consider a universal or existential formula with its

context affected by changes a concurrent point, which would

incur the invocation of the evalentire or evalpartial function and

also feasible for initiating the concurrent checking in INFUSE.

For our preceding constraint Sloc and a checking task

T = (chg1, chg2, chg2, chg4), these changes affect both the

universal formula (i.e., ∀vx ∈ Cx) and the inner existential

formula (i.e., ∃vy ∈ Cy) in Sloc. They are both candidates

for initiating concurrent checking. INFUSE can choose both

or the outermost one for the cost concern.

Step 6: Link generation. Similarly, link generation

LINFUSE[s] in INFUSE starts with incremental checking by

genentire(L[f]bind((v,xi),α)|xi ∈ Set ∧ τ [f]bind((v,xi),α) = F)
(1) Lentire[f]bind((v,x1),α) ‖ · · · ‖ Lentire[f]entire((v,xs),α),
if ∀v ∈ C(f) is a concurrent point.
(2) Lentire[f]bind((v,x1),α) ; · · · ; Lentire[f]bind((v,xs),α),
otherwise.

genpartial(L[f]bind((v,xi),α) | xi ∈ Set ∧ τ [f]bind((v,xi),α) = F)
(1) Lpartial[f]bind((v,x1),α) ‖ · · · ‖ Lpartial[f]bind((v,xs),α),
if ∀v ∈ C(f) is a concurrent point.
(2) Lpartial[f]bind((v,x1),α) ; · · · ; Lpartial[f]bind((v,xs),α),
otherwise.

Fig. 11. Semantics of the gen functions (partial and entire checking)

invoking its partial checking semantics, i.e., LINFUSE[s] =
Lpartial[s]α.

Links are generated to explain why a consistency constraint

has been violated or satisfied, in a form of (linkType, variable

assignments). The linkType is violated or satisfied, corre-

sponding to the evaluated truth value of False or True, and

variable assignments disclose that the violation or satisfaction

occurs under what kind of variable bindings (recall our preced-

ing example of link (violated, {(vx, r3), (vy, r3)})). Similarly,

Fig. 9 gives INFUSE’s partial link generation semantics for

the universal formula (five cases simiplified; a full treatment

of all formula types is accessible at our website [17]).

(1) If no change affects the universal formula or its subfor-

mula, this formula’s previous link result L0 is reusable.

(2) If the changes affect the universal formula only by adding

new elements, this formula’s previous link result L0 is

reusable and one can update it with the link results of

the new elements, by the genentire function in Fig. 11

and and Lentire semantics in Fig. 10.

(3) If the changes affect the universal formula only by

deleting or updating existing elements, the link results

of the remaining elements are reusable, and those of

the other elements should be calculated by the genentire

193

function similarly.

(4) If the changes affect the subformula only, the link re-

sults of all elements should be updated by the genpartial
function in Fig. 11.

(5) Otherwise, the changes affect both the universal formula

and its subformula, one has to update the link results of

unchanged elements by the genpartial function and those

of changed elements by the genentire function.

Similarly, the genentire and genpartial functions can work

concurrently for efficiency at concurrent points. In the follow-

ing, we give the second theorem to guarantee that INFUSE

soundly fuses incremental and concurrent checking semantics.

Theorem 2 (HOW-Correctness). Given any consistency con-
straint and associated context pool, INFUSE produces the
same result by its check fusion semantics, as existing constraint
checking techniques do.

Sketch of proof The complete proof is tedious. Basically,

we prove that INFUSE works the same in terms of checking

results (i.e., truth values and generated links) as full checking

(ECC [5]), incremental checking (PCC [10]), and concurrent

checking (Con-C [11]), for all seven formula types. The

detailed proof is at our website [17]. �
As a summary, INFUSE conducts constraint checking with

WHAT-Correctness for concurrency maximization and HOW-

Correctness for fusion soundness. We next evaluate how this

effort brings efficiency improvement.

IV. EVALUATION

In this section, we evaluate INFUSE’s performance and

compare it with existing constraint checking techniques.

A. Research Questions

W aim to answer the following three research questions:

• RQ1 (Motivation): How do existing constraint checking
techniques behave when handling large-volume dynamic
contexts?

• RQ2 (Effectiveness): How effective is INFUSE in con-
straint checking for detecting context inconsistencies, as
compared with existing techniques?

• RQ3 (Practical Usage): How effective is INFUSE in
constraint checking under real-life settings?

B. Experimental Design and Setup

Application. For fair comparisons, we used the taxi applica-

tion, SmartCity, as our experimental subject, following existing

work [9]–[12]. The application used massive taxi-driving data

for smart route guidance.

Contexts. The application was accompanied with data con-

cerning 2,716 vehicles monitored in a continuous period of

24 hours, i.e., 4.3 million raw driving data lines (containing

vehicle id, GPS coordinates, driving speed and orientation,

and service status). They correspond to 25.6 million context
changes as modeled in the application, with varying workloads

across different hours. To alleviate the experimental cost,

we selected three distinct groups of data with light, median,

and heavy workloads, representing the hours of 4am–5am

(311,240 context changes), 9am–10am (843,686 changes),

and 5pm–6pm (1,664,900 changes), respectively. The average

intervals between consecutive changes are 11.6, 4.3, and 2.2

milliseconds (ms), respectively.

Constraints. We used all 48 consistency constraints asso-

ciated with the application, also studied in existing work [9],

[10]. They cover all formula types in the constraint language.

Process. In experiments, contexts are fed to the application

with a middleware layer in between, which checks the contexts

for consistency. We compare INFUSE with existing constraint

checking techniques (ECC, PCC, and Con-C), using both

their original versions (subscript “O”) [10], [11] and and

variants enhanced by GEAS (subscript “G”) [9]. We also com-

pared INFUSE with a naïve implementation INFUSE0 of the

incremental-concurrent idea, which directly split incremental

checking into parallel computing units (i.e., without INFUSE’s

concurrency maximization).

Setup. We design three independent variables:

• Checking technique. We compare eight techniques or

variants, namely, ECCO, ECCG, Con-CO, Con-CG,

PCCO, PCCG, INFUSE0, and INFUSE.

• Checking workload. We use three constraint checking

workloads, namely, light, median, and heavy, as afore-

mentioned.

• Running mode. We study two running modes, namely,

offline and online. With the former, next context changes

are fed only when previous changes have been han-

dled (comparing true efficiency differences). With the

latter, context changes are fed strictly according to their

timestamps, no matter whether previous changes have

been handled or not (possibly causing false negatives or

positives).

We design three dependent variables:

• Checking time. It measures the total time spent on con-

straint checking.

• False negative rate (RFN). It measures the proportion of

missed context inconsistencies against all inconsistencies

that should be reported.

• False positive rate (RFP). It measures the proportion

of wrong context inconsistencies against all reported

inconsistencies.

All experiments were conducted on a commodity PC with

an AMD Ryzen 5600X 6-Core Processor with 32GB RAM,

installed with MS windows 10 Professional and Oracle Java 8.

To answer RQ1, we compare six existing constraint check-

ing techniques and INFUSE0 on the heavy-workload con-

texts under the offline mode to observe their performance.

To answer RQ2, we compare all eight constraints checking

techniques on all three workload contexts under the offline

mode, measuring the checking quality (by reported inconsis-

tencies) and efficiency (by checking time). To answer RQ3,

we compare all eight constraints checking techniques on

all three workload contexts under the online mode (real-life

194

ECCO ECCG Con-COCon-CG PCCO PCCG INFuse0

Fig. 12. Checking time comparison for the seven techniques on the heavy-
workload contexts (the red dashed line represents the one-hour limit)

timestamps), measuring the checking quality (by false negative

and positive rates) and efficiency (by checking time).

C. Experimental Results

We answer the three research questions in turn.

1) RQ1 (Motivation): We compared the checking time

of the seven constraint checking techniques on the heavy-

workload contexts in Fig. 12.

We observe that the checking time varied significantly

for different constraint checking techniques, e.g., ECC up

to 19.1–137.7 hours, Con-C for 11.2–68.0 hours, and PCC

for 3.3–5.9 hours. We note that the time limit for handling

this hour of contexts is one hour only, as illustrated by the

red dashed line, and thus none of these techniques fulfilled

the requirement, e.g., the worst case of ECCO took nearly

six days! This strongly calls for more efficient constraint

checking techniques. Besides, as INFUSE0 shows, directly

splitting incremental checking into parallel computing units

did not bring significant improvement, behaving even worse

than PCCG.

Therefore, we answer RQ1 as follows: All existing con-
straint checking techniques and naïve implementation of
the incremental-concurrent idea failed to deliver satisfactory
checking efficiency.

2) RQ2 (Effectiveness): We compared the checking time

of INFUSE and the seven techniques on all three workload

contexts in Fig. 13. As the comparison was under the offline

mode, all context changes were safely checked in turn, and

thus all techniques obtained correct inconsistency detection

results (this may not be true for the online mode later).

Therefore, we focus on the checking time comparison here.

From the figure, we observe that: (1) although different

workloads brought greatly varying checking time (from sec-

onds to hours, almost 500x difference), INFUSE behaved

significant and stable efficiency improvement for all workload

contexts (always most efficient), e.g., 0.0x–18.6x improvement

for the light workload, 2.4x–105.4x for median, and 3.1x–

171.1x for heavy; (2) for all three workloads, INFUSE’s

checking time kept satisfactory (5.7 seconds, 7.7 minutes,

and 0.8 hours, respectively), less than the one-hour limit; (3)

with the growth of the checking workload, INFUSE exhibited

increasing superiority over all other techniques, e.g., from an

efficiency improvement up to 18.6x, to 105.4x, and to 171.1x,

which is impressive; (4) when comparing INFUSE with the

naïve implementation INFUSE0, their difference was large and

kept increasing, e.g., 5.7 s vs. 8.4 s (67.9%), 7.7 min vs.

46.7 min (16.5%), and 0.8 h vs. 5.6 h (14.3%). We owe all

these achievements to INFUSE’s concurrency maximization

and fusion soundness.
Therefore, we answer RQ2 as follows: INFUSE worked

significantly efficient, achieving up to 18.6x, 105.4x, and
171.1x improvements for different workloads, as compared
with existing constraint checking techniques.

3) RQ3 (Practical Usage): We also compared INFUSE

with the other seven techniques under an online mode, which

simulated real-life context change scenarios. We focus on the

checking quality (by false negative and positive rates RFN

and RFP) and efficiency (by checking time). Table II lists the

comparison results.

TABLE II
COMPARISONS AMONG ALL TECHNIQUES UNDER THE ONLINE MODE.

Workload
Checking
techniques

Oracle
incs (#)

Reported
incs/* (#)

Tcost(s) RFN (%) RFP (%)

Light

ECCO

3,254

3,254 128.6 0.0% 0.0%

Con-CO 3,254 54.3 0.0% 0.0%

PCCO 3,254 12.8 0.0% 0.0%

ECCG 3,254 26.9 0.0% 0.0%

Con-CG 3,254 16.9 0.0% 0.0%

PCCG 3,254 13.1 0.0% 0.0%

INFUSE0 3,254 13.1 0.0% 0.0%

INFUSE 3,254 10.8 0.0% 0.0%

Median

ECCO

21,436

8,647/694* 3,850.9 96.8% 92.0%

Con-CO 14,209/897* 3,593.9 95.8% 93.7%

PCCO 20,942/19,369* 1,513.7 9.6% 7.5%

ECCG 20,412/1,415* 3,588.4 93.4% 93.1%

Con-CG 20,779/19,293* 1,950.8 10.0% 7.2%

PCCG 21,377/19,414* 1,099.7 9.4% 9.2%

INFUSE0 20,922/19,371* 1,588.5 9.6% 7.4%

INFUSE 21,436 456.6 0.0% 0.0%

Heavy

ECCO

29,642

4,934/392* 4,032.1 98.7% 92.1%

Con-CO 6,611/463* 3,748.2 98.4% 93.0%

PCCO 22,574/1,028* 3,410.8 96.5% 95.5%

ECCG 14,617/801* 3,574.8 97.3% 94.5%

Con-CG 20,824/957* 3,375.5 96.8% 95.4%

PCCG 29,115/1,178* 3,594.4 96.0% 96.0%

INFUSE0 22,302/1,013* 3,463.2 96.6% 95.5%

INFUSE 29,642 2,954.6 0.0% 0.0%

* represents the number of true positives among reported inconsistencies.
If the slash “/” is omitted, all reported inconsistencies are true positives.

From the table, we observe that: (1) For the light workload,

all checking techniques reported correct inconsistency results,

but INFUSE took the least time, 10.8 seconds, 17.6–91.6%

less than other techniques; (2) For the median workload,

ECCO, Con-CO, and ECCG were subject to severe quality

problems with over 90% false negative and positive rates,

and PCCO, Con-CG, PCCG, and INFUSE0 suffered moderate

quality problems with around 7%–10% false negative and

positive rates, while INFUSE behaved perfectly with both

zero false negative and positive rates, by taking still the least

time; (3) For the heavy workload, all checking techniques

took much more time, but still produced even worse results

(92%–99% false negative and positive rates), except INFUSE,

which achieved an amazing victory of still both zero false

negative and positive rates. This suggests INFUSE’s highly

stable performance under very high workloads.

195

ECCO ECCG Con-CO Con-CG PCCO PCCG INFuse0 INFuse

(a) Light workload (unit: second or s)

ECCO ECCG Con-CO Con-CG PCCO PCCG INFuse0 INFuse

(b) Median workload (unit: minute or min)

ECCO ECCG Con-CO Con-CG PCCO PCCG INFuse0 INFuse

(c) Heavy workload (unit: hour or h)
Fig. 13. Checking time comparison for all checking techniques on all workload contexts.

Therefore, we answer RQ3 as follows: INFUSE worked still
significantly efficient under real-life dynamic scenarios with
zero false positive and negative, while other techniques could
miss up to 98.7% and misreport up to 96.0% inconsistencies.

D. Threats Analyses and Discussion

Although only one application was studied in the exper-

iments, we tried to alleviate the concerned threats: (1) The

application was also used in existing work [9]–[12], with the

same set of consistency constraints and contexts to facilitate

comparisons (fair); (2) We used all 48 consistency constraints,

which cover all those used in existing work’s experiments

(comprehensive), and these constraints cover all formula types

in the constraint language (complete); (3) Three groups of

contexts were selected to represent different workloads to

examine different constraint checking techniques (representa-

tive). Besides, to avoid possible bias, we (re)implemented all

constraint checking techniques under the same I/O interface

and data structures. We would later release our implementa-

tions to facilitate follow-up research.

V. RELATED WORK

Our software engineering community has extensively stud-

ied the problem of consistency management for software

artifacts, which could involve different development processes,

e.g., software refactoring [18], method name suggestion [19],

agile model-based development [20], or the whole software

engineering process [21]. Some pieces of work focuses on

managing the consistency of traditional software artifacts, like

edit scripts [1], UML models [2]–[4], XML documents [5]–

[7], and distributed source code [22], which are featured as

being typically static or evolving slowly. Others tackle more

dynamic artifacts in context-aware systems [23], attention-

aware systems [24], and safety-critical systems [25]. Recently,

the latter line of work receives increasing attention, and we

are working along it with extensive application scenarios

like Pollen Wise [26], Humanoid Companion Robot [27],

and self-driving vehicle systems [28], [29]. Besides detecting

inconsistencies in software artifacts, a relevant aspect of efforts

is around resolving the inconsistencies by heuristics [30]–

[32] and fixing strategies [33]–[37]. This also boosts the

development of accompanying frameworks or supporting in-

frastructures like Cabot [38], Adam [39], and Lime [40].

Our work in this paper focuses on efficiently and effectively

detecting inconsistencies in dynamic application contexts. On

this particular aspect, various techniques work with varying

efficiency gains and costs. For example, xlinkit [5], works in

a full checking way, as the correctness baseline; PCC [10]

checks incrementally by reusing previous results; Con-C [11]

checks concurrently on units with similar workloads. All these

are useful but gradually becoming less effective, with the

continuous growth of environmental dynamics and context

volume. Regarding this, GEAS [9] was proposed to cleverly

schedule the checking of multiple context changes together to

help accelerate a spectrum of existing techniques. Our work

resembles this line, but builds on dynamic validity criteria

derived from incremental and concurrent checking, different

from GEAS, which builds only on static constraint informa-

tion. As a result, INFUSE works even more efficiently than

any existing constraint checking technique, either originally

or combined with GEAS, as our experimental results show.

INFUSE’s idea opens a new direction to further improve con-

straint checking techniques. Our work exactly works along this

line, trying to wisely fuse existing incremental and concurrent

checking for even higher efficiency and better practical usages.

VI. CONCLUSION

In this work, we studied the efficient context inconsistency

detection problem. We proposed a novel INFUSE approach,

which on one hand automatically identifies valid context

change groups for concurrency maximization, and on the other

hand soundly fuses incremental and concurrent checking for

reuse maximization. This effort works on both the constraint

checking level and checking scheduling level, thus outperform-

ing any existing constraint checking technique and checking

scheduling strategy, as well as their direct combinations,

realizing an 18.6x–171.1x efficiency improvement with quality

guarantees. In future, we plan to more extensively validate

INFUSE on comprehensive application scenarios, and explore

possible finer-granularity balancing tunning inside the fusion

checking for unexpected workload dynamics.

ACKNOWLEDGMENT

This work was supported by the Natural Science Foundation

of China under Grant Nos. 61932021 and 62072225, and the

Leading-edge Technology Program of Jiangsu Natural Science

Foundation under Grant No. BK20202001. The authors would

also like to thank the support from the Collaborative Innova-

tion Center of Novel Software Technology and Industrializa-

tion, Jiangsu, China.

196

REFERENCES

[1] T. Kehrer, U. Kelter, and G. Taentzer, “Consistency-preserving edit
scripts in model versioning,” in 2013 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013, E. Denney, T. Bultan,
and A. Zeller, Eds. IEEE, 2013, pp. 191–201. [Online]. Available:
https://doi.org/10.1109/ASE.2013.6693079

[2] R. S. Bashir, S. P. Lee, S. ur Rehman Khan, V. Chang, and S. Farid,
“UML models consistency management: Guidelines for software quality
manager,” Int. J. Inf. Manag., vol. 36, no. 6, pp. 883–899, 2016.
[Online]. Available: https://doi.org/10.1016/j.ijinfomgt.2016.05.024

[3] N. Messaoudi, A. Chaoui, and M. Bettaz, “An approach to UML
consistency checking based on compositional semantics,” Int. J. Embed.
Real Time Commun. Syst., vol. 8, no. 2, pp. 1–23, 2017. [Online].
Available: https://doi.org/10.4018/IJERTCS.2017070101

[4] B. Wei and J. Sun, “Leveraging SPARQL queries for UML consistency
checking,” Int. J. Softw. Eng. Knowl. Eng., vol. 31, no. 4, pp. 635–654,
2021. [Online]. Available: https://doi.org/10.1142/S0218194021500170

[5] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, “xlinkit: a
consistency checking and smart link generation service,” ACM Trans.
Internet Techn., vol. 2, no. 2, pp. 151–185, 2002. [Online]. Available:
https://doi.org/10.1145/514183.514186

[6] S. P. Reiss, “Incremental maintenance of software artifacts,” IEEE
Trans. Software Eng., vol. 32, no. 9, pp. 682–697, 2006. [Online].
Available: https://doi.org/10.1109/TSE.2006.91

[7] H. A. H. Handley, W. Khallouli, J. Huang, W. Edmonson, and
N. Kibret, “Maintaining the consistency of sysml model exports
to XML metadata interchange (XMI),” in IEEE International
Systems Conference, SysCon 2021, Vancouver, BC, Canada, April
15 - May 15, 2021. IEEE, 2021, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/SysCon48628.2021.9447105

[8] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection
of collaboration conflicts,” in SIGSOFT/FSE’11 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-19)
and ESEC’11: 13th European Software Engineering Conference
(ESEC-13), Szeged, Hungary, September 5-9, 2011, T. Gyimóthy
and A. Zeller, Eds. ACM, 2011, pp. 168–178. [Online]. Available:
https://doi.org/10.1145/2025113.2025139

[9] H. Wang, C. Xu, B. Guo, X. Ma, and J. Lu, “Generic adaptive
scheduling for efficient context inconsistency detection,” IEEE Trans.
Software Eng., vol. 47, no. 3, pp. 464–497, 2021. [Online]. Available:
https://doi.org/10.1109/TSE.2019.2898976

[10] C. Xu, S. C. Cheung, W. K. Chan, and C. Ye, “Partial constraint
checking for context consistency in pervasive computing,” ACM Trans.
Softw. Eng. Methodol., vol. 19, no. 3, pp. 9:1–9:61, 2010. [Online].
Available: https://doi.org/10.1145/1656250.1656253

[11] C. Xu, Y. Liu, S. C. Cheung, C. Cao, and J. Lv, “Towards context
consistency by concurrent checking for internetware applications,” Sci.
China Inf. Sci., vol. 56, no. 8, pp. 1–20, 2013. [Online]. Available:
https://doi.org/10.1007/s11432-013-4907-5

[12] C. Xu, W. Xi, S. Cheung, X. Ma, C. Cao, and J. Lu, “Cina: Suppressing
the detection of unstable context inconsistency,” IEEE Transactions on
Software Engineering, vol. 41, no. 9, pp. 842–865, 2015.

[13] S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin, “Adaptive cleaning
for RFID data streams,” in Proceedings of the 32nd International
Conference on Very Large Data Bases, Seoul, Korea, September 12-15,
2006, U. Dayal, K. Whang, D. B. Lomet, G. Alonso, G. M. Lohman,
M. L. Kersten, S. K. Cha, and Y. Kim, Eds. ACM, 2006, pp. 163–174.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1164143

[14] J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby, “A deferred
cleansing method for RFID data analytics,” in Proceedings of the
32nd International Conference on Very Large Data Bases, Seoul,
Korea, September 12-15, 2006, U. Dayal, K. Whang, D. B. Lomet,
G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and
Y. Kim, Eds. ACM, 2006, pp. 175–186. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1164144

[15] K. Patil, V. Bansal, V. Dhateria, and S. Narayankhedkar, “Probable
causes of rfid tag read unreliability in supermarkets and proposed
solutions,” in International Conference on Information Processing, 12
2015, pp. 392–397.

[16] N. Fescioglu-Ünver, S. H. Choi, D. Sheen, and S. R. T. Kumara,
“RFID in production and service systems: Technology, applications

and issues,” Inf. Syst. Frontiers, vol. 17, no. 6, pp. 1369–1380, 2015.
[Online]. Available: https://doi.org/10.1007/s10796-014-9518-1

[17] “INFUSE website,” https://sth4infuse.github.io/.
[18] H. A. Le, T. Dao, and N. Truong, “A formal approach to

checking consistency in software refactoring,” Mob. Networks Appl.,
vol. 22, no. 2, pp. 356–366, 2017. [Online]. Available: https:
//doi.org/10.1007/s11036-017-0807-z

[19] Y. Li, S. Wang, and T. N. Nguyen, “A context-based automated
approach for method name consistency checking and suggestion,” in
43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 2021, pp. 574–586.
[Online]. Available: https://doi.org/10.1109/ICSE43902.2021.00060

[20] R. Jongeling, F. Ciccozzi, A. Cicchetti, and J. Carlson, “Lightweight
consistency checking for agile model-based development in practice,” J.
Object Technol., vol. 18, no. 2, pp. 11:1–20, 2019. [Online]. Available:
https://doi.org/10.5381/jot.2019.18.2.a11

[21] C. Mayr-Dorn, R. Kretschmer, A. Egyed, R. Heradio, and D. Fernández-
Amorós, “Inconsistency-tolerating guidance for software engineering
processes,” in 43rd IEEE/ACM International Conference on Software
Engineering: New Ideas and Emerging Results, ICSE (NIER) 2021,
Madrid, Spain, May 25-28, 2021. IEEE, 2021, pp. 6–10. [Online].
Available: https://doi.org/10.1109/ICSE-NIER52604.2021.00010

[22] A. Demuth, M. Riedl-Ehrenleitner, and A. Egyed, “Efficient detection
of inconsistencies in a multi-developer engineering environment,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September
3-7, 2016, D. Lo, S. Apel, and S. Khurshid, Eds. ACM, 2016, pp.
590–601. [Online]. Available: https://doi.org/10.1145/2970276.2970304

[23] Y. Limón, E. Bárcenas, E. Benítez-Guerrero, and G. Molero,
“On the consistency of context-aware systems,” J. Intell. Fuzzy
Syst., vol. 34, no. 5, pp. 3373–3383, 2018. [Online]. Available:
https://doi.org/10.3233/JIFS-169518

[24] Y. Limón, E. Bárcenas, E. Benítez-Guerrero, and J. Gomez,
“Consistency checking of attention aware systems,” in Proceedings
of the Twelfth Latin American Workshop on Logic/Languages,
Algorithms and New Methods of Reasoning, Puebla, Mexico, November
15, 2019, ser. CEUR Workshop Proceedings, M. J. O. Galindo,
J. R. Marcial-Romero, C. Z. Cortés, and P. P. Parra, Eds.,
vol. 2585. CEUR-WS.org, 2019, pp. 13–23. [Online]. Available:
http://ceur-ws.org/Vol-2585/paper2.pdf

[25] C. Mayr-Dorn, M. Vierhauser, S. Bichler, F. Keplinger, J. Cleland-
Huang, A. Egyed, and T. Mehofer, “Supporting quality assurance
with automated process-centric quality constraints checking,” in 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021. IEEE, 2021, pp. 1298–1310.
[Online]. Available: https://doi.org/10.1109/ICSE43902.2021.00118

[26] “Pollen wise - what’s in your air, when and where,” [EB/OL], https://
play.google.com/store/apps/details?id=com.PollenSense.PollenWise Ac-
cessed May 13, 2022.

[27] P. Kuo, S. Lin, J. Hu, and C. Huang, “Multi-sensor context-aware
based chatbot model: An application of humanoid companion robot,”
Sensors, vol. 21, no. 15, p. 5132, 2021. [Online]. Available:
https://doi.org/10.3390/s21155132

[28] “Waymo,” https://waymo.com.
[29] “The numbers dont lie: Self-driving cars are getting good.” https://www.

wired.com/2017/02/california-dmv-autonomous-car-disengagement/.
[30] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, and J. Lu, “Managing quality of

context in pervasive computing,” in Sixth International Conference on
Quality Software (QSIC 2006), 26-28 October 2006, Beijing, China.
IEEE Computer Society, 2006, pp. 193–200. [Online]. Available:
https://doi.org/10.1109/QSIC.2006.38

[31] C. Xu, S. Cheung, W. K. Chan, and C. Ye, “Heuristics-based
strategies for resolving context inconsistencies in pervasive computing
applications,” in 28th IEEE International Conference on Distributed
Computing Systems (ICDCS 2008), 17-20 June 2008, Beijing, China.
IEEE Computer Society, 2008, pp. 713–721. [Online]. Available:
https://doi.org/10.1109/ICDCS.2008.46

[32] J. Chomicki, J. Lobo, and S. A. Naqvi, “Conflict resolution using
logic programming,” IEEE Trans. Knowl. Data Eng., vol. 15, no. 1,
pp. 244–249, 2003. [Online]. Available: https://doi.org/10.1109/TKDE.
2003.1161596

[33] C. Chen, C. Ye, and H. Jacobsen, “Hybrid context inconsistency
resolution for context-aware services,” in Ninth Annual IEEE
International Conference on Pervasive Computing and Communications,

197

PerCom 2011, 21-25 March 2011, Seattle, WA, USA, Proceedings.
IEEE, 2011, pp. 10–19. [Online]. Available: https://doi.org/10.1109/
PERCOM.2011.5767574

[34] R. Kretschmer, D. E. Khelladi, A. Demuth, R. E. Lopez-Herrejon,
and A. Egyed, “From abstract to concrete repairs of model
inconsistencies: An automated approach,” in 24th Asia-Pacific Software
Engineering Conference, APSEC 2017, Nanjing, China, December
4-8, 2017, J. Lv, H. J. Zhang, M. Hinchey, and X. Liu, Eds.
IEEE Computer Society, 2017, pp. 456–465. [Online]. Available:
https://doi.org/10.1109/APSEC.2017.52

[35] C. Xu, S. C. Cheung, W. K. Chan, and C. Ye, “On impact-
oriented automatic resolution of pervasive context inconsistency,” in
Proceedings of the 6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik,
Croatia, September 3-7, 2007, I. Crnkovic and A. Bertolino, Eds.
ACM, 2007, pp. 569–572. [Online]. Available: https://doi.org/10.1145/
1287624.1287712

[36] C. Xu, X. Ma, C. Cao, and J. Lu, “Minimizing the side
effect of context inconsistency resolution for ubiquitous computing,”
in Mobile and Ubiquitous Systems: Computing, Networking, and
Services - 8th International ICST Conference, MobiQuitous 2011,
Copenhagen, Denmark, December 6-9, 2011, Revised Selected Papers,
ser. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, A. Puiatti and T. Gu,
Eds., vol. 104. Springer, 2011, pp. 285–297. [Online]. Available:
https://doi.org/10.1007/978-3-642-30973-1_29

[37] D. E. Khelladi, R. Kretschmer, and A. Egyed, “Detecting and exploring
side effects when repairing model inconsistencies,” in Proceedings
of the 12th ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2019, Athens, Greece, October 20-22, 2019,
O. Nierstrasz, J. Gray, and B. C. d. S. Oliveira, Eds. ACM, 2019, pp.
113–126. [Online]. Available: https://doi.org/10.1145/3357766.3359546

[38] C. Xu, S. Cheung, C. Lo, K. Leung, and J. Wei, “Cabot: On the ontology
for the middleware support of context-aware pervasive applications,” in
Network and Parallel Computing, IFIP International Conference, NPC
2004, Wuhan, China, October 18-20, 2004, Proceedings, ser. Lecture
Notes in Computer Science, H. Jin, G. R. Gao, Z. Xu, and H. Chen,
Eds., vol. 3222. Springer, 2004, pp. 568–575. [Online]. Available:
https://doi.org/10.1007/978-3-540-30141-7_85

[39] C. Xu, S. C. Cheung, X. Ma, C. Cao, and J. Lu, “Adam:
Identifying defects in context-aware adaptation,” J. Syst. Softw.,
vol. 85, no. 12, pp. 2812–2828, 2012. [Online]. Available: https:
//doi.org/10.1016/j.jss.2012.04.078

[40] A. L. Murphy, G. P. Picco, and G. Roman, “LIME: A coordination
model and middleware supporting mobility of hosts and agents,” ACM
Trans. Softw. Eng. Methodol., vol. 15, no. 3, pp. 279–328, 2006.
[Online]. Available: https://doi.org/10.1145/1151695.1151698

198

