

Validating SMT Solvers via Semantic Fusion

[PLDI'20]
Dominik Winterer, Chengyu Zhang, Zhendong Su

张灵毓

Outline

- 1. Background
 - SAT/SMT
 - Motivation
- 2. Approach
 - Semantic Fusion
- 3. Evaluation

Background

SAT problem: Given a well-formed formula α in propositional logic, decide whether there exists a satisfying solution for α .

SMT problem: Given a well-formed formula φ in first-order logic (often disallow quantifiers), decide whether there exists a satisfying solution for φ .

$$A \wedge B \wedge C \longrightarrow f(x, y, z) \wedge g(x, y, z) \wedge h(x, y, z)$$

$$f(x, y, z)$$
: $3x + 2y - z = 1$
 $g(x, y, z)$: $2x - 2y + 4z = -2$
 $h(x, y, z)$: $-x + 0.5y - z = 0$

$$f(x, y, z)$$
: $3x + 2y - z = 1$

$$g(x, y, z)$$
: $2x - 2y + 4z = -2$

$$h(x, y, z)$$
: $-x + 0.5y - z = 0$

 $f(x, y, z) \wedge g(x, y, z) \wedge h(x, y, z)$

SMT solver

sat: $\{x = 1, y = -2, z = -2\}$

Motivation

Widely used

• SMT solvers such as Z3 and CVC4 have been used as a building block for a wide range of applications across computer science, including in automated theorem proving, program analysis, program verification, and software testing.*

Lack of effective method

- Within the last ten years, SMT solvers have greatly matured, and finding bugs in them has become more difficult.
- Yet none has targeted other SMT theories nor found bugs in recent versions of CVC4.

^{*}https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

Approach

Key Insight

Key insight: fuse two tests into a new test that combines the structures of its ancestors.

Intuitively, concatenate two tests (conjunction or disjunction).

$$\varphi_1 = x > 0 \land x < 2$$

$$\varphi_2 = (v = (y \neq -1)) \land (v \to false)$$

$$\varphi_{concate} = (x > 0 \land x < 2) \land ((v = (y \neq -1)) \land (v \rightarrow false))$$

Formula Concatenation

Concatenate two tests (conjunction or disjunction).

$$\varphi_{concate} = (x > 0 \land x < 2) \land ((v = (y \neq -1)) \land (v \rightarrow false))$$

More complex and satisfiability is provable.

Free variables of φ_1 (e.g. x) and free variables of φ_2 (e.g. y) are independent with each other.

Semantic Fusion

$$\varphi_{concate} = (x > 0 \land x < 2) \land ((v = (y \neq -1)) \land (v \rightarrow false))$$

$$\varphi_{1} \qquad \qquad \varphi_{2}$$

Variable Fusion: Create fresh variables to connect the free variable sets of φ_1 and φ_2 using fusion function.

Fusion function: z = f(x, y) (e.g. z = x * y)

Variable Inversion: Substitute some occurrences of the chosen variables in φ_1 and φ_2 by inversion functions.

Inversion function: $x = r_x(y, z)$ (e.g. x = z/y) $y = r_y(x, z)$ (e.g. y = z/x)

Semantic Fusion

$$\varphi_{concate} = (x > 0 \land x < 2) \land ((v = (y \neq -1)) \land (v \rightarrow false))$$

$$\varphi_{fused} = ((z/y) > 0 \land x < 2) \land ((v = ((z/x) \neq -1)) \land (v \rightarrow false))$$

? Satisfiability is still provable?

Yes, map z to the value which is calculated by fusion function.

$$M(v) = M_1(v)$$
, for $v \in vars(\varphi_1)$
 $M(v) = M_2(v)$, for $v \in vars(\varphi_2)$
 $M(z) = f(M_1(x), M_2(y))$

Add fusion constraints while fusing UNSAT formula.

Counterexample:

$$\varphi_{1} = x > 0 \land x < 0$$

$$\varphi_{2} = y \neq y$$

$$z = x + y$$

$$\varphi_{fused} = (x > 0 \land (z - y) < 0) \lor (y \neq z - x)$$

$$sat: \{x = 1, y = 2, z = 1\}$$

Fusion constraints

Correct fusion:

$$\varphi_1 = x > 0 \land x < 0$$

$$\varphi_2 = y \neq y$$

$$z = x + y$$

$$\varphi_{fused} = ((x > 0 \land (z - y) < 0) \lor (y \neq z - x)) \land (z = x + y)$$

Evaluation

none has targeted other SMT theories

Logic	Z 3	CVC4	Total
NIA	2	1	3
NRA	15	1	16
QF_NIA	0	1	1
QF_NRA	2	0	2
QF_S	15	4	19
QF_SLIA	3	1	4

(c)

(c) Affected SMT logics of the confirmed bugs in Z3 and CVC4

Evaluation

nor found bugs in recent versions of CVC4.

Status	Z 3	CVC4	Total			
Reported	44	13	57			
Confirmed	37	8	45			
Fixed	35	6	41			
Duplicate	4	1	5			
Won't fix	2	0	2			
(a)						

Type	Z 3	CVC4	Total
Soundness	24	5	29
Crash	11	1	12
Performance	1	2	3
Unknown	1	0	1

(b)

- (a)Status of the reported bugs in Z3 and CVC4
- (b) Types of the confirmed bugs in Z3 and CVC4

Figure 12. Coverage improvement (%) of ConcatFuzz (in gray) and YinYang (in black) over Benchmark (in white) averaged over all logics.

Thanks