
Understanding, Detecting and Localizing 
Partial Failures in Large System Software

[NSDI’20] Chang Lou etc.



Understanding, Detecting and Localizing 
Partial Failures in Large System Software



Partial Failures
• A fault not crash system but causes safety or liveness violation or server 

slowness

2023/6/12 3Hard to detect



Modern Software Suffers Partial Failrues
• Modern software is complex so that is easily subject to partial failures

2023/6/12 4



Understanding, Detecting and Localizing 
Partial Failures in Large System Software



Study Methodology
• 100 partial failure cases from five large, widely used software systems

• Interestingly, 54% of them occur in the most recent three years' software 
releases (average lifespan of all systems is 9 years).

2023/6/12 6



Study Scope
• Process-level

2023/6/12 7



Main Findings
• The root causes of studied failures are diverse (Figure 2)

• Top three (total 48%) root cause types:  uncaught errors, indefinite blocking, and 
buggy error handling

• The Majority of failures violate liveness (Figure 3)
• Functionality stuck (48%), slow operations (17%)

2023/6/12 8



Main Findings
• Most cases (71%) triggered by unique production workload or environment

• Long debugging time
• The median diagnosis time is 6 days and 5 hours

2023/6/12 9



Features of Partial Failures
• Common in modern software

• Long debugging time

• Production-dependent

• Diverse root causes

2023/6/12 10

Certainly need detecting
and localizing

Static approaches 
could not work well

Manually writing checker 
is unrealistic

Automatically construct runtime checkers



Understanding, Detecting and Localizing 
Partial Failures in Large System Software



Design Principle: Intersecting with Main Program
• Partial failures typically involve specific software feature and bad states

2023/6/12 12



Three Characteristics of Runtime Checker
• Customized: tailored to monitored modules

• Stateful: entailing specific input and program state

• Concurrent: decoupled with main program without delaying its executions

2023/6/12 13



Core Idea: Mimic Checker
• Imitating representative operations in main program and detecting errors

2023/6/12 14

Reflect the monitored 
process’ status

Pinpoint the faulty module 
and failing instruction



Obtain Mimic Checker by Program Reduction 
• Selecting vulnerable operations and encapsulating them into checkers

2023/6/12 15



Seven Steps for generating checkers
1. Identify Long-running Methods

2. Locate Vulnerable Operations

3. Reduce Main Program

4. Encapsulate Reduced Program

5. Add Checks to Catch Faults

6. Validate Impact of Caught Faults

7. Prevent Side Effects
2023/6/12 16



1.Identify Long-running Methods

2023/6/12 17

• Identifying long-running loops in 
each call graph node  

• Coloring invocation in long-running 
loops recursively



2.Locate Vulnerable Operations

2023/6/12 18

• Use heuristics to locate vulnerable 
operations in long-running 

methods  long-running method  



3.Reduce Main Program
• Top-down reduction: retaining vulnerable operations

2023/6/12 19



4.Encapsulate Reduced Program
• Analyzing and initializing arguments before reduced methods

2023/6/12 20

Not executable due to missing definitions

Get values of arguments from context



4.Encapsulate Reduced Program
• Instrumenting main program to store contexts

2023/6/12 21



5.Add Checks to Catch Faults

2023/6/12 22

• Safety checking relies on explicit error signals 
(assertions, exceptions, and error code) 

• Liveness checking relies on timers

• 𝑤𝑑 _𝑎𝑠𝑠𝑒𝑟𝑡 API  for semantics 



6.Validate Impact of Caught Faults
• A reported error may be transient or tolerant

• e.g. a transient network delay that caused no damage

• Simply re-executing the checker and compare for transient errors

• Providing validation task skeletons :
• Allowing developers write their own user-defined validation tasks
• Automatically deciding which validation task to invoke depending on which 

checker failed.

2023/6/12 23



7.Prevent Side Effects 
• Context Replication

• Preventing checkers from modifying the main program’s states

2023/6/12 24



7.Prevent Side Effects 
• Context Replication

• To reduce performance overhead: immutability analysis + lazy copy

2023/6/12 25



7.Prevent Side Effects 
• Context Replication

• Checking consistency before copying and invocation with hashCode and
versioning

2023/6/12 26



7.Prevent Side Effects 
• I/O Redirection and Idempotent Wrappers (I/O isolation)

• Write: file-related resource replicated with target path changed to test file
• Read: caching read results of main program

2023/6/12 27



Evaluation



Evaluated Systems
• Evaluate OmegaGen on six large systems

• ZK: ZooKeeper; CS: Cassandra; HF: HDFS; HB: HBase; MR: MapReduce; YN: Yarn

2023/6/12 29



Generated Watchdogs
• Watchdog generated by static analysis

• 60% of threads in production contains at least one watchdog checker

2023/6/12 30



22 Real-World Partial Failures

2023/6/12 31



Detection overview
• Baseline Detectors

• Built-in detectors (heartbeat) in the six systems cannot handle partial failures as all

• Implement four types of advanced detectors

2023/6/12 32

Detector Description

Client(Panorama [OSDI ’18]) instrument and monitor client responses

Probe(Falcon [SOSP ’11]) daemon thread in the process that periodically invokes 
internal functions with synthetic requests

Signal script that scans logs and checks JMX metrics

Resource daemon thread that monitors memory usage, disk and I/O 
health, and active thread count



Detecting Overview
• Methodology

• Run checks every second

• Result

• 20 out of 22 cases was detected

2023/6/12 33



Detection Localization
• Six level of decreasing accuracy

• ➸ faulty instruction
• ✻ faulty function
• ✺ faulty call chain
• ◗ faulty entry
• ● faulty process
• ❍ misjudged process

• 55%(11/20) of the detected cases are pinpointed to faulty instruction

2023/6/12 34
accuracy



More Detection Results
• Random fault-injection tests

• Experiment on ZooKeeper
• Inject four types of faults

• Infinite loop
• Arbitrary delay
• System resource contention
• I/O delay

• Trigger 16 synthetic failures and 13 of them was detected

• A new bug
• In Zookeeper version v3.5.5
• Different from bugs in reproduction failures cases

2023/6/12 35



False Alarms
• False alarms emerge when random nodes restart which leads to socket 

connection errors or resource contention

• Validator mechanism significantly reduce false alarm ratio

2023/6/12 36



Limitations
• vulnerable operation analysis is heuristics-based

• generated watchdogs are ineffective to catch silent semantic failures

• Achieve memory isolation with static analysis-assisted context replication

• OmegaGen generates watchdogs to report failures for individual process

• watchdogs focus on fault detection and localization but not recovery

2023/6/12 37



Conclusion
• Modern software systems become ever more complex

• Existing solutions cannot capture partial failures among them

• This work research partial failures via case studies

• OmegaGen : a static analysis tool that automatically generates customized 
checkers

• Prove effective on reproduction databases
• Report a new bug 

2023/6/12 38



Thanks

2023/6/12 39


