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Goal

* Finding bugs in mainstream C compilers like GCC and LLVM.

Method

* Randomly generating C programs.
* Differential testing.
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Contributions

* Generating random programs that are expressive.

|

* Using many C language features.

* Ensuring every program has one single interpretation.

* A collection of qualitative and quantitative results about the bugs.
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istruct X{ ‘

int a;
float b;
}s

Randomly Generating Programs

struct Y{
struct X Xx;
int c[2];
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Safety Mechanisms

Generate code fragment

l Fall

Safety Checking

l Pass

Commit

Integer Safety
Type Safety
Pointer Safety
Effect Safety
Array Safety

Initializer Safety



Integer safety

* Signed Overflow

x+1>x -1

INT_MAX +1 — INT_MIN Wrapper Functions

* Shift-past-bitwidth

1 K 31 isillegal in C99 with 32-bit ints



Type safety

* Qualifier Safety

// object of const-qualified type
const int n = 1;

intx p = (intx)é&n;

// undefined behavior

xp = 2;

Static Analysis



Pointer safety

* Null-pointer Dereference.

* Invalid-pointer Dereference.
intx p; : :
P Pointer Analysis
int foo(){
p = 0; Pts = {locs,null, invalid}
*p = 1; // null pointer.

int a = 3;

p = &aj; No Heap
}
int bar(){

int x = xpj;//invalid pointer.

s



Effect safety

* Unspecified Order

func(a(), b());

Pointer Analysis
int a = i++ + ++1;

Effect = {Setyeqa, Setyritten)
* Read/Write Conflict between Sequence Points

int a = p + func();
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Array safety

* |Indices out of bounds.

For Loop

for(int i = @0; i < arr.size(); ++i){
//not modify i

Modulo Operator

arr[i % arr.size()];
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Initializer safety

* Uninitialized Function-scoped Variable

int foo(){
int a;//a 1s uninitlalized Structurally Ensure Initializing
int x = a + 233;

}

int foo(){
int a;
goto LABEL; //span initializer Forbid gotos from spanning
a=1; //initialized here INnitializer
LABEL:

int Xx = a + 233;
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Results

GCC | LLVM
Crash 2 10
Wrong code 2 9
Total 4 19

Table 2. Crash and wrong-code bugs found by Csmith that manifest
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Figure 4. Number of distinct crash errors found in 24 hours of

testing with Csmith-generated programs in a given size range
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Results
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Figure 5. Comparison of the ability of five random program gener-
ators to find distinct crash errors
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Results

Line | Function Branch

Coverage | Coverage | Coverage

make check-c 75.13% 82.23% 46.26%

make check-c & random 75.58% 82.41% 47.11%

GCC | 9 change +0.45% |  +0.13% | +0.85%
absolute change +1,482 +33 +4.471

make test 74.54% 72.90% 59.22%

make test & random 74.69% 72.95% 59.48%

Clang | o, change +0.15% |  +0.05% | +0.26%
absolute change +655 +74 +926

Table 3. Augmenting the GCC and LLVM test suites with 10,000
randomly generated programs did not improve code coverage much

Guess: these metrics are too shallow to capture Csmith’s effects
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Thank you!
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