Finding and Understanding
Bugs in C Compilers

2021 Most Influential PLDI Paper Award

wEAN IKRER

Goal

* Finding bugs in mainstream C compilers like GCC and LLVM.

Method

* Randomly generating C programs.
* Differential testing.

Cl
outputl
No
Csmith SameC @ - Bugs
rogram
w

C2

Contributions

* Generating random programs that are expressive.

|

* Using many C language features.

* Ensuring every program has one single interpretation.

* A collection of qualitative and quantitative results about the bugs.

istruct X{ ‘

Randomly Generating Programs it s :
| float b; |

135 |

Randomly creating) |
struct type declarations EStP”z:PIEt - |

i int c[2]; :

I} |

ExtDef — Specifier FunDec CompSt (recurse) __ ____ _ ____ __ ____________

IUGIH foo(){ 1

I

Specifier » TYPE (random) / bar(): i
I

| StructSpecifier

FunDec —ID LP RP (random)
...... foo Is suspended until bar is finished.

Exp — ID LP RP (ramdom)

istruct X{ ‘

int a;
float b;
}s

Randomly Generating Programs

struct Y{
struct X Xx;
int c[2];

Qutput main

Call first generated function

OQutput checksum

|
I
|
|
How to ensure one single interpretation? ~~J_ ----- |
I
|
|
|

Static Analysis and Run-time Checking

I
I
I
, return ©;
I
I

Safety Mechanisms

Generate code fragment

l Fall

Safety Checking

l Pass

Commit

Integer Safety
Type Safety
Pointer Safety
Effect Safety
Array Safety

Initializer Safety

Integer safety

* Signed Overflow

x+1>x -1

INT_MAX +1 — INT_MIN Wrapper Functions

* Shift-past-bitwidth

1 K 31 isillegal in C99 with 32-bit ints

Type safety

* Qualifier Safety

// object of const-qualified type
const int n = 1;

intx p = (intx)é&n;

// undefined behavior

xp = 2;

Static Analysis

Pointer safety

* Null-pointer Dereference.

* Invalid-pointer Dereference.
intx p; : :
P Pointer Analysis
int foo(){
p = 0; Pts = {locs,null, invalid}
*p = 1; // null pointer.

int a = 3;

p = &aj; No Heap
}
int bar(){

int x = xpj;//invalid pointer.

s

Effect safety

* Unspecified Order

func(a(), b());

Pointer Analysis
int a = i++ + ++1;

Effect = {Setyeqa, Setyritten)
* Read/Write Conflict between Sequence Points

int a = p + func();

10

Array safety

* |Indices out of bounds.

For Loop

for(int i = @0; i < arr.size(); ++i){
//not modify i

Modulo Operator

arr[i % arr.size()];

11

Initializer safety

* Uninitialized Function-scoped Variable

int foo(){
int a;//a 1s uninitlalized Structurally Ensure Initializing
int x = a + 233;

}

int foo(){
int a;
goto LABEL; //span initializer Forbid gotos from spanning
a=1; //initialized here INnitializer
LABEL:

int Xx = a + 233;

12

Results

GCC | LLVM
Crash 2 10
Wrong code 2 9
Total 4 19

Table 2. Crash and wrong-code bugs found by Csmith that manifest

— —

—_—— — —_—— —— —_—— e —— — — — — — — — — — — — —]

command-line option 1s used)

¢c618-L60¥%

960¥-6¥02

81¥02-G20

SR veoLelS
e I AT
4 | 9szsel
—E | 82199
el | voee
p- 2e-L)

i e

o o o o o o
Tp) < (40 o\ | —

SJ0.13 ysei) 1ounsig

60

Results

9€G499-69/¢2€

89/cE-G8E9|

—

Range of Program Sizes Tested, in Tokens

Figure 4. Number of distinct crash errors found in 24 hours of

testing with Csmith-generated programs in a given size range

14

Results

90 Csmith : 86 crash

o 80 +

O

=

w70 +

%

© 60

O

o 50 r

=

%’ 40

. Eide08 : 33 craspgg;

-SaRe Ul i o e e T

‘(E ______________ pm=r==m" ! e

S 00 [} emreeee T Lindig07.:.20.crashes

S ’ S e Tumner05_; 14 crashes

3 10 o T McKeeman989crashe$
0 "] | | | |]]

0 1 2 3 4 5 6 7

Testing Time (Days)

Figure 5. Comparison of the ability of five random program gener-
ators to find distinct crash errors

15

Results

Line | Function Branch

Coverage | Coverage | Coverage

make check-c 75.13% 82.23% 46.26%

make check-c & random 75.58% 82.41% 47.11%

GCC | 9 change +0.45% | +0.13% | +0.85%
absolute change +1,482 +33 +4.471

make test 74.54% 72.90% 59.22%

make test & random 74.69% 72.95% 59.48%

Clang | o, change +0.15% | +0.05% | +0.26%
absolute change +655 +74 +926

Table 3. Augmenting the GCC and LLVM test suites with 10,000
randomly generated programs did not improve code coverage much

Guess: these metrics are too shallow to capture Csmith’s effects

16

Thank you!

	Finding and Understanding Bugs in C Compilers
	Goal
	Contributions
	Randomly Generating Programs
	幻灯片编号 5
	Safety Mechanisms
	Integer safety
	Type safety
	Pointer safety
	Effect safety
	Array safety
	Initializer safety
	Results
	Results
	Results
	Results
	幻灯片编号 17

