
CODAMOSA: Escaping Coverage Plateaus in
Test Generation with Pre-trained Large

Language Models
[ICSE’ 23] Caroline Lemieux etc.

Lingyu Zhang
2023/05/30

Outline
• Search-Based Software Testing (SBST)

• SBST Suffers Coverage Plateaus

• Unleashing the Power of PLLM to Escape the Coverage Plateaus
• Prompt Engineering
• Post-processing

• Evaluation

2023/6/12 2

Search-Based Software Testing (SBST)
• Automatically generate test cases with some form of evolutionary algorithm

2023/6/12 3

Test casesRandom
generation New test cases

Mutation

Fitness function

Higher coverage

SBST Suffers Coverage Plateaus
• Difficult to exercise PUT (Program Under Test) in an expected manner

2023/6/12 4

Search stuck on generated test cases

Expected version string: " 1.2.2 "
Generated test case

Expected pos range: -3~2

Generated test case

Hard to
mutate

Unleashing the Power of PLLM

2023/6/12 5

• Query PLLM to generate tests for low coverage callables

PLLM

Test casesRandom
generation New test cases

Mutation

Fitness function

Higher coverage

Prompt Engineering

Post-Processing

Prompt Engineering
• Sampling low coverage callable

• 𝑐𝑜𝑣(𝑐∗): the coverage score of callable 𝑐∗

• Zero-shot learning

2023/6/12 6

Probability of sampling 𝑐∗ = "#$%&($
∗)

∑ "#$%&($)

Source Code including targeted callable X

Unit test for function/method/constructor X
def test_X():

Incompatible Test Case Generated by PLLM
• Requiring test deserialization

2023/6/12 7

Post-processing (Test Deserialization)
1. Rewrite PLLM Generations

2023/6/12 8

Pynguin’s Assumptions

Test cases are sequence of assignment
statements

v1 = 3
v2 = bar(v1)
v3 = [a, b]

Single variable

Constant
Function call
List or dictionary

z = foo(bar(2))

1) Store value of standalone expression into a
variable

2) Remove nested subexpressions

int_0 = 2
var_0 = bar(int_0)
z = foo(var_0)

Post-processing (Test Deserialization)
2. Partial Parsing

3. Callables Expansion

2023/6/12 9

x = 3
y = UNKOWN_FUNCTION(x)
z = foo(y)
w = bar(x)

Pyguin
x = 3
y = UNKOWN_FUNCTION(x)
z = foo(y)
w = bar(x)

CODAMOSADrop All x = 3
w = bar(x)

Pyguin：only parse callables in PUT

CODAMOSA: track callables via import statements in PUT

Post-processing (Test Deserialization)
4. Uninterpreted Statements

• Observation: different syntactical constructs of rhs were crucial to increasing coverage
• Add a new type statement in Pyguin: 𝑙ℎ𝑠 = 𝑔(𝑣𝑟0,⋯ , 𝑣𝑟𝑛), where 𝑔 is an operator over
𝑣𝑟0,… , 𝑣𝑟𝑛

• Implement a mutation operator

2023/6/12 10

var_0 = lambda x: x + int_0 var_0 = lambda x: x + int_1
mutation

Evaluation
• How does CODAMOSA compare to our baselines on our benchmark set?

• BaseLines: MOSA and CodexOnly

2023/6/12 11

Evaluation
• How do our design decisions (uninterpreted statements, Codex hyper-parameters,

low-coverage targeting, prompting) affect test effectiveness?

2023/6/12 12

Evaluation
• Are Codex generations copied from out-of-prompt files in the module under test’s

codebase?

2023/6/12 13

Thanks

2023/6/12 14

